◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Introduction to Sage

Sébastien Labbé

Laboratoire d'Informatique Algorithmique: Fondements et Applications (LIAFA), Paris

Groupe d'utilisateurs de Sage de Paris Chevaleret November 22th 2012 History of Sage

Sage

"You can read Sylow's Theorem and its proof in Huppert's book in the library ...then you can use Sylow's Theorem for the rest of your life free of charge, but for many computer algebra systems license fees have to be paid regularly

With this situation two of the most basic rules of conduct in mathematics are violated : In mathematics information is passed on free of charge and everything is laid open for checking."

—J. Neubüser (1993) (il a fondé GAP en 1986)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

"I think, fundamentally, open source does tend to be more stable software. It's the right way to do things. I compare it to science versus witchcraft.

In science, the whole system builds on people looking at other people's results and building on top of them.

In witchcraft, somebody had a small secret and guarded it—but never allowed others to really understand it and build on it."

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Why You Do Not Usually Need to Know about Internals

« You should realize at the outset that while knowing about the internals of Mathematica may be of intellectual interest, it is usually much less important in practice than you might at first suppose. [...] For the internals of Mathematica are quite complicated, [...], it is usually extremely difficult to reach a reliable conclusion about how the detailed implementation of this algorithm will actually behave in particular circumstances. »

—Mathematica Tutorial

ション ふゆ く は マ く ほ マ く し マ

http://reference.wolfram.com/mathematica/tutorial/

 $\label{eq:WhyYouDoNotUsuallyNeedToKnowAboutInternals.html$

Sage

Community

Some functionalities

Outline

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

ション ふゆ く は マ く ほ マ く し マ

Before Sage

Existing commercial softwares (general purpose) :

- Maple, Waterloo Maple Inc., Maplesoft, since 1985.
- Matematica, Wolfram Research, since 1988.
- Magma, University of Sydney, since 1990
- Matlab, MathWorks, since 1989

Free existing softwares (specific purpose) :

- Maxima, W. Schelter et coll., since 1967 : symbolic operations
- GAP, GAP Group, since 1986 : computational group theory
- Singular, U. of Kaiserslautern, since 1984 : polynomial comput.
- PARI/GP, since 1985 : number theory computations

Beginning of Sage

- *1999-2005.* William Stein write over 25000 lines of Magma code for its own research, but had some serious concerns :
 - Magma do not allow users to define their own types (or classes)
 - No exception handling
 - No "eval statements"
 - No way for users to write compiled code
 - Magma is closed source
 - Magma is not free

« I sat down on that park bench, and realized what a dangerous path I was taking in giving up so much freedom so early in my career. I resolved at that moment not to do it. At that moment I started designing what would eventually become Sage. »

- William Stein

Mathematical Software and Me : A Very Personal Recollection, 2009

History of Sage

Sage

Some functionalities

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Beginning of Sage

- Jan. 2005. William Stein creates Sage.
- *Feb. 2005.* Sage version 0.1 : gathers 5 software : PARI, Maxima, Python, Singular et GAP.
- David Kohel in Australia, David Joyner, in Maryland, joined the project.
- Dec. 2005. William receives an email from Magma leader.

Beginning of Sage

```
Date: Mon, 19 Dec 2005 16:54:09 -0800
From: "John Cannon" <john@maths.usyd.edu.au>
Subject: Magma calculator
William,
```

This is to formally advise you that your permission to run a general-purpose calculator based on Magma ends on Dec 31, 2005. This was originally set up at your request so students in your courses at Harvard could have easy access to Magma.

Please confirm receipt of this letter. Wishing you a happy Christmas, John

Beginning of Sage

« This single email seriously scared me. Though I was working on Sage very hard for nearly a year at this point, I honestly didn't then expect Sage to really be able to replace Magma for me. [...] What John made crystal clear to me was that he could destroy my entire longterm plans on a whim. I looked around for other options, and there just weren't any. Sage had to succeed. » — William Stein

Mathematical Software and Me : A Very Personal Recollection, 2009

History of Sage

- *Feb. 2006.* Sage version 1.0 is released; first "annual" Sage Days are organised : Sage Days 1.
- Dec. 2007. Sage gets slashdoted :

+ - IT: Open Source 'Sage' Takes Aim at High End Math Software

Posted by <u>CmdrTaco</u> on Saturday December 08 2007, @12:19PM from the that'll-take-awhile dept.

coondoggie writes

"A <u>new open source mathematics program</u> is looking to push aside commercial software commonly used in mathematics education, in large government laboratories and in math-intensive research. The program's backers say the software, called Sage, can do anything from mapping a 12-dimensional object to calculating rainfall patterns under global warming."

software it sage octave math story

• 2008 Mupad-Combinat group (lead by Nicolas Thiéry et Florent Hivert) switches to Sage : Sage-Combinat

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- 2009 : ?
- *2010* : ?
- *2011* : ?
- 2012 : ?

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

History of Sage

# Sage Days	Releases	Functions	Contributors
0	120		3
2	90		
4	60	17947	
8	23	22034	≈ 100
9	14	23763	
13	16	26592	219
14	5	28462	235
15	6	30508 (5.5.rc0)	249
	# Sage Days 0 2 4 8 9 13 14 14 15	# Sage Days Releases 0 120 2 90 4 60 8 23 9 14 13 16 14 5 15 6	# Sage Days Releases Functions 0 120 120 2 90 120 4 60 17947 8 23 22034 9 14 23763 13 16 26592 14 5 28462 15 6 30508 (5.5.rc0)

|▲□▶|▲圖▶|▲≣▶||▲≣▶||| 差||||の�@

History of Sage

Sage

Community

Some functionalities

うして ふゆう ふほう ふほう しょうく

Mission

The Sage Project aims to create a viable high-quality and *open-source* alternative to Magma, Maple, Mathematica, Matlab and MuPAD, and to foster a friendly community of users and developers.

- The freedom to use the software (it is free).
- The freedom to read the source code.
- The freedom to improve the software.
- The freedom to redistribute the modified software to anyone.

- The freedom to use the software (it is free).
- The freedom to read the source code.
- The freedom to improve the software.
- The freedom to redistribute the modified software to anyone.

- The freedom to use the software (it is free).
- The freedom to read the source code.
- The freedom to improve the software.
- The freedom to redistribute the modified software to anyone.

- The freedom to use the software (it is free).
- The freedom to read the source code.
- The freedom to improve the software.
- The freedom to redistribute the modified software to anyone.

- The freedom to use the software (it is free).
- The freedom to read the source code.
- The freedom to improve the software.
- The freedom to redistribute the modified software to anyone.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Sage is ...

a distribution of softwares

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Sage is a *distribution* of open source softwares

These softwares are included in Sage :

ATLAS Automatically Tuned Linear Algebra Software BLAS Basic Fortan 77 linear algebra routines Bzip2 High-quality data compressor Cddlib Double Description Method of Motzkin Common Lisp Multi-paradigm and general-purpose programming lang. CVXOPT Convex optimization, linear programming, least squares Cython C-Extensions for Python F2c Converts Fortran 77 to C code Flint Fast Library for Number Theory FpLLL Euclidian lattice reduction FreeType A Free, High-Quality, and Portable Font Engine

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Sage is a *distribution* of open source softwares

These softwares are included in Sage :

G95 GAP GD Genus2reduction Gfan Givaro GMP GMP-ECM GNU TLS GSL JsMath

Open source Fortran 95 compiler Groups, Algorithms, Programming Dynamic graphics generation tool Curve data computation Gröbner fans and tropical varieties C++ library for arithmetic and algebra GNU Multiple Precision Arithmetic Library Elliptic Curve Method for Integer Factorization Secure networking Gnu Scientific Library JavaScript implementation of LaTeX

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Sage is a *distribution* of open source softwares

These softwares are included in Sage :

IML Integer Matrix Library IPvthon Interactive Python shell LAPACK Fortan 77 linear algebra library Lcalc L-functions calculator Libgcrypt General purpose cryptographic library Libgpg-error Common error values for GnuPG components Linbox C++ linear algebra library Matplotlib Python plotting library Maxima computer algebra system Mercurial Revision control system MoinMoin Wiki

(ロ) (型) (E) (E) (E) (O)

Sage is a *distribution* of open source softwares

These softwares are included in Sage :

MPFI Multiple Precision Floating-point Interval library MPFR C library for multiple-precision floating-point computations ECLib Cremona's Programs for Elliptic curves NetworkX Graph theory NTL Number theory C++ library Numpy Numerical linear algebra OpenCDK Open Crypto Development Kit PALP A Package for Analyzing Lattice Polytopes PARI/GP Number theory calculator Pexpect Pseudo-tty control for Python PNG Bitmap image support

Sage is a *distribution* of open source softwares

These softwares are included in Sage :

PolyBoRi Polynomials Over Boolean Rings PyCrypto | Python Cryptography Toolkit Python | Interpreted language Qd Quad-double/Double-double Computation Package R Statistical Computing Readline Line-editing Python interface to R Rpy Scipy Python library for scientific computation Singular fast commutative and noncommutative algebra Scons Software construction tool SQLite Relation database

(ロ) (型) (E) (E) (E) (O)

Sage is a *distribution* of open source softwares

These softwares are included in Sage :

L-function calculator Sympow Symmetrica Representation theory Sympy Python library for symbolic computation Tachyon lightweight 3d ray tracer Termcap for writing portable text mode applications Twisted Python networking library Weave Tools for including C/C++ code within Python 7lib Data compression library ZODB Object-oriented database

Sage is a *distribution* of open source softwares

These softwares are included in Sage :

L-function calculator Sympow Symmetrica Representation theory Sympy Python library for symbolic computation Tachyon lightweight 3d ray tracer Termcap for writing portable text mode applications Twisted Python networking library Weave Tools for including C/C++ code within Python 7lib Data compression library ZODB Object-oriented database

...and more!

(ロ) (型) (E) (E) (E) (O)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

> sage -gap

###	###	######	+####		###
###	###	######	+#####		####
####	####	######	+######		#####
####	####	#####	######		#####
####	#####	#####	#####	: #	#####
#####	#####	#####	#####	##	#####
#####	####	#####	######	###	#####
#####	#####	######	+######	###	####
####	####	######	#####	####	####
#####	#####	######		####	####
#####	#####	#####		######	#######
########	########	#####		######	#######
########	########	#####		######	#######
##########	#########	#####			####
#####	#####	#####			####
#####	#####	#####			####
#####	#####	#####			####

Information at: http://www.gap-system.org Try '?help' for help. See also '?copyright' and '?authors'

Loading the library. Please be patient, this may take a while. GAP4, Version: 4.4.10 of 02-Oct-2007, x86_64-unknown-linux-gnu-gcc

gap>

History of Sage	Sage	Community	Some functionalities

> sage -singular

SINGULAR / Development A Computer Algebra System for Polynomial Computations / version 3-1-0 0< by: G.-M. Greuel, G. Pfister, H. Schoenemann \ Mar 2009 FB Mathematik der Universitaet, D-67653 Kaiserslautern \

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

				F.	5		
	3		V '				
			~				

Sage

> sage -maxima

Maxima 5.16.3 http://maxima.sourceforge.net Using Lisp ECL 9.4.1 Distributed under the GNU Public License. See the file COPYING. Dedicated to the memory of William Schelter. The function bug_report() provides bug reporting information. (%i1)

History of Sage	Sage	Community	Some functionalities

> sage -gp

GP/PARI CALCULATOR Version 2.3.3 (released) amd64 running linux (x86-64/GMP-4.2.1 kernel) 64-bit version compiled: Jul 10 2009, gcc-4.3.2 (Ubuntu 4.3.2-1ubuntu12) (readline v5.2 enabled, extended help available)

Copyright (C) 2000-2006 The PARI Group

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

PARI/GP is free software, covered by the GNU General Public License, and comes WITHOUT ANY WARRANTY WHATSOEVER.

```
Type ? for help, \q to quit.
Type ?12 for how to get moral (and possibly technical) support.
parisize = 8000000, primelimit = 500000
?
```

> sage -R

R version 2.6.1 (2007-11-26) Copyright (C) 2007 The R Foundation for Statistical Computing ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R.

>

Sage *combines* software.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

		~	0	
Histo	DEV	ot	50	CA
111300	Ji y	01	04	50

Sage

Community

Some functionalities

(ロ)、

Sage *combines* software

[This examples are from a presention of William Stein]
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sage *combines* software

[This examples are from a presention of William Stein]

Construct an elliptic curve using John Cremona's table :

```
sage: E = EllipticCurve('389a')
```

Community

Some functionalities

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Sage *combines* software

[This examples are from a presention of William Stein]

Construct an elliptic curve using John Cremona's table :

```
sage: E = EllipticCurve('389a')
```


Community

Some functionalities

ション ふゆ く は マ く ほ マ く し マ

Sage *combines* software

[This examples are from a presention of William Stein]

Construct an elliptic curve using John Cremona's table :

```
sage: E = EllipticCurve('389a')
```


History of Sage

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

Sage *combines* software

PARI to compute Fourier coefficients a_n :

```
sage: E.anlist(15)
[0, 1, -2, -2, 2, -3, 4, -5, 0, 1, 6, -4, -4, -3, 10, 6
```

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Sage *combines* software

PARI to compute Fourier coefficients a_n :

sage: E.anlist(15)
[0, 1, -2, -2, 2, -3, 4, -5, 0, 1, 6, -4, -4, -3, 10, 6

lcalc to compute zeros in the critical strip of the L-series :

sage: E.lseries().zeros(5)
[0.000000000, 0.000000000, 2.87609907, 4.41689608, 5.79

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Sage *combines* software

PARI to compute Fourier coefficients a_n :

sage: E.anlist(15)
[0, 1, -2, -2, 2, -3, 4, -5, 0, 1, 6, -4, -4, -3, 10, 6

lcalc to compute zeros in the critical strip of the L-series :

sage: E.lseries().zeros(5)
[0.000000000, 0.000000000, 2.87609907, 4.41689608, 5.79

sympow to compute the modular degree :

```
sage: E.modular_degree()
40
```

Sage *combines* software

PARI to compute Fourier coefficients a_n :

sage: E.anlist(15)
[0, 1, -2, -2, 2, -3, 4, -5, 0, 1, 6, -4, -4, -3, 10, 6

lcalc to compute zeros in the critical strip of the L-series :

sage: E.lseries().zeros(5)
[0.000000000, 0.000000000, 2.87609907, 4.41689608, 5.79

sympow to compute the modular degree :

```
sage: E.modular_degree()
40
```

Magma to compute the rank of the 3-selmer group :

sage: magma(E).ThreeSelmerGroup()
Abelian Group isomorphic to Z/3 + Z/3
Defined on 2 generators

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Sage *combines* software

Let's integrate $\int \cos(x^2) dx$:

```
sage: integrate(cos(x^2), x)
-1/8*((I + 1)*sqrt(2)*erf((1/2*I - 1/2)*sqrt(2)*x) +
(I - 1)*sqrt(2)*erf((1/2*I + 1/2)*sqrt(2)*x))*sqrt(pi)
```

Software used for this computation :

sage: from sage.misc.citation import get_systems
sage: get_systems("integrate(cos(x²), x)")
['MPFI', 'ginac', 'GMP', 'Maxima']

History of Sage

Sage

Some functionalities

ション ふゆ く は マ く ほ マ く し マ

Sage *combines* software

"We implement all conversion routines, instead of expecting upstream to do it : we make them communicate with Sage, whether they want to or not. Resistence is futile." —William Stein (started Sage)

Sage Important Philosophy : Elements have parent

```
sage: m = matrix(ZZ, 3, [2,3,4,2,4,6,8,8,5])
sage: m.parent()
Full MatrixSpace of 3 by 3 dense matrices over Integer Ring
sage: m.echelon_form()
[2 0 1]
[0 1 2]
[0 0 3]
sage: m = matrix(QQ, 3, [2,3,4,2,4,6,8,8,5])
sage: m.parent()
Full MatrixSpace of 3 by 3 dense matrices over Rational Field
sage: m.echelon_form()
[1 0 0]
[0 \ 1 \ 0]
[0 0 1]
```


Sage uses *Python* as its programming language.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

History of Same	
Thistory of Suge	

Sage uses Python

- Sage \approx Python + a huge Python library
- Sage may be the first successful math software system to not invent its own new language just for mathematics.
- Tens of thousands of third party Python packages are immediately available for use with Sage !
- Easy to write and read :

math : $\left\{17x \middle| x \in \{0, 1, ..., 9\} \text{ et } x \text{ est impair } \right\}$ python : [17*x for x in range(10) if x % 2 == 1]

Some functionalities

Sage uses Python

« Google has made no secret of the fact they use Python a lot for a number of internal projects. Even knowing that, once I was an employee, I was amazed at how much Python code there actually is in the Google source code system. » — Guido van Rossum

(Python creator)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Aruliah, D. A., C. Titus Brown, Neil P. Chue Hong, Matt Davis, Richard T. Guy, Steven H. D. Haddock, Katy Huff, et al. *Best Practices for Scientific Computing*. arXiv :1210.0530 (September 30, 2012). http://arxiv.org/abs/1210.0530.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Community

Some functionalities

You are not alone!

(ロ) (型) (E) (E) (E) (O)

Working together with internet

Development :

- http://groups.google.com/group/sage-devel
- http://trac.sagemath.org/sage_trac/
- http://wiki.sagemath.org/

Support :

- http://groups.google.com/group/sage-support
- http://ask.sagemath.org/questions/
- http://wiki.sagemath.org/

Other Google Group include : sage-combinat-devel, sage-release and sage-edu.

irc-channel

#sage-devel on freenode.net

Community

Some functionalities

Developer Map

There are currently 244 + 1 + 4 contributors in 165 + 1 + 2 different places from all around the world.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

Some functionalities

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Sage Days

Sage Days are workshops aiming at

- fix bugs and develop new functionalities
- attract new users and developers

Dozen of workshops are organized every year all around the world.

Sage Days in 2010

- Sage Days 19 : Seattle, USA (January 2010)
- Sage Days 20 : Marseille, France (February 2010)
- Sage Days 20.25 : Montreal, Canada (March 2010)
- Sage Days 20.5 : Toronto, Canada (May 2010)
- Sage Days 21 : Seattle, USA (June 2010)
- Sage-Combinat/Chevie : France (June 2010)
- Sage Days 22 : Berkeley, USA (July 2010)
- Sage Days 23 : Leiden, Netherlands (July 2010)
- Sage Days 23.5 : Kaiserslautern, Germany (July 2010)
- Sage Days 24 : Linz, Austria (July 2010)
- Sage Days 25 : Mumbai, India (August 2010)
- Sage Days 25.5 : Montreal, Canada (September 2010)
- Sage Days 26 : Seattle, USA (December 2010)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Sage Days in 2011

- Sage Days 27 : Seattle, USA (January 2011)
- Sage Days 28 : Orsay, France (January 2011)
- Sage Days 29 : Seattle, USA (March 21-25, 2011)
- Sage Days 30 : Halifax, Canada (May 2-6, 2011)
- Sage Days 31 : Seattle, USA (June 11-18, 2011)
- Sage Education Days 3 : Seattle, USA (June 16-18, 2011)
- Sage Days 32 : Seattle, USA (August 21-25, 2011
- Sage Days 33 : Women in Sage, Seattle (September 2011)
- Sage Days 34 : Kaiserslautern, Germany (Sept. 2011)
- Sage Days 34.5 : Bobo Dioulasso, Burkina Faso (Nov. 2011)
- Sage Days 35 : Warwick UK (December 2011)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つくぐ

Sage Days in 2012

- Sage Days 35.5 : Wenham, MA (January 2012)
- Sage-Combinat Days 35.75 : France (February 2012)
- Sage Days 36 : UC San Diego, (February 2012)
- Review Days 2 : March 17-22, Seattle WA.
- Sage Days 36.5 : April 17-22, Seattle WA.
- Sage Days 37 : 28 April 2012, Seoul, South Korea.
- Sage Days 38 : May 7-11 2012, Montréal, Canada.
- Bug Days 19 : May 24-29, Seattle WA.
- Sage Days 39 : May 26-27 2012, Fukuoka, Japan.
- Sage Days 41 : June 11-15, 2012, Seattle.
- Sage Edu Days 4 : June 13-15, 2012, Seattle.
- SAGE-Combinat Days 40 : July 9-13, Minneapolis, MN.
- Sage Days 42 : July 15-19, 2012, Seattle, WA.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Sage à Paris

Locations :

- Orsay
- Jussieu
- Chevaleret
- IRILL
- Télécom ParisTech

| ◆ □ ▶ → @ ▶ → 差 ▶ → 差 → のへぐ

Some functionalities

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Some functionalities

Interfaces :

- Command line
- Sage Notebook (local)
- Sage Notebook (internet)
- New : Sage in a web page (by Jason Grout, USA)

Interesting features :

- Sagetex (Dan Drake, Corée du Sud)
- Graph Editor (Radoslav Kirov, États-Unis)
- Interact and animations
- Cython : translates Python code \mapsto C code.

Some functionalities

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Command line interface

saliola@karkwa: ~	_ = ×
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>T</u> erminal <u>T</u> abs <u>H</u> elp	
saliola@karkwa:~\$ sage	^
SAGE Version 3.1.2, Release Date: 2008-09-19 Type notebook() for the GUI, and license() for information.	·····
<pre>sage: 3 * 17 51 sage: [17 * x for x in range(10) if x % 2 == 1] [17, 51, 85, 119, 153] sage: Partitions(4).list() [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]] sage: ■</pre>	
	K III

History of Sage

Sage

Community

Some functionalities

Notebook interface (local)

Some functionalities

Notebook interface (internet)

http://sagenb.org/

Welcome!

Sage is a different approach to mathematics software.

The Sage Notebook

With the Sage Notebook anyone can create, collaborate on, and publish interactive worksheets. In a worksheet, one can write code using Sage, Python, and other software included in Sage.

General and Advanced Pure and Applied Mathematics

Use Sage for studying calculus, elementary to very advanced number theory, cryptography, commutative algebra, group theory, graph theory, numerical and exact linear algebra, and more.

Use an Open Source Alternative

By using Sage you help to support a viable open source alternative to Magma, Maple, Mathematica, and MATLAB. Sage includes many high-quality open source math packages.

Use Most Mathematics Software from Within Sage

Sage makes it easy for you to use most mathematics software together. Sage includes GAP, GP/PARI, Maxima, and Singular, and dozens of other open packages.

Use a Mainstream Programming Language

You work with Sage using the highly regarded scripting language Python. You can write programs that combine serious mathematics with anything else.

Sign into the Sage Notebook v4.7

Username
Password
📃 Remember me
(Sign in)
Sign up for a new Sage Notebook account
Browse published Sage worksheets
(no login required)

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Single Cell Server

Sage Cell Server

This web page contains an interactive Sage widget and a collection of 26 examples. You can edit it however you want. Interacts, graphics and plotting, etc., should all work.

Topic	Subtopic	Examples	
Algebra	Basics	Funny Plot	
Calculus	Multivariate	ODE Plot	
Geometry	ODE	Simple Plot	
Graph Theory	Plot		
Graphics			
Libs	Ŧ		

Calculus>Plot Funny Plot: this is just a funny plot

1 plot(sin(x) / (2+cos(pi*x)), (-2*pi, 6*pi))

History of Sage

Community

Some functionalities

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

In this LATEXfile, I write

```
sageplot{plot(-x^3+3*x^2+7*x-4,-5,5)}
```

History of Sage

Some functionalities

In this LATEXfile, I write

 $sageplot{plot(-x^3+3*x^2+7*x-4,-5,5)}$

and this is replaced by :

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ のへの

In this LATEXfile :

```
\begin{sagesilent}
  sigma = Permutation([7,3,1,5,2,6,8,4])
  P, Q = sigma.robinson_schensted()
\end{sagesilent}
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

It got replaced with :

Let $\sigma = [7, 3, 1, 5, 2, 6, 8, 4]$. The Robinson-Schensted-Knuth algorithm produces the tableaux :

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

It got replaced with :

Let $\sigma = [7, 3, 1, 5, 2, 6, 8, 4]$. The Robinson-Schensted-Knuth algorithm produces the tableaux :

This is done with the sagetex package for $\[MTeX\]$, written by Dan Drake. Of course, the package is included with Sage.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Some functionalities

For more informations

http://sagemath.org

Some functionalities

ション ふゆ く は マ く ほ マ く し マ

For more information

- http://sagemath.org
- http://sagemath.org/doc
- http://sagemath.org/help.html
- http://wiki.sagemath.org

Ressources in French :

- http://sagemath.org/fr
- http://sagemath.org/fr/html/tutorial

Le livre Calcul mathématique avec Sage :

• http://sagebook.gforge.inria.fr/
History of Sage

Sage

Community

Some functionalities

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Let's start ! Commençons !