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Abstract

In this article, we extend the definition of Christoffel words to directed subgraphs of the
hypercubic lattice in arbitrary dimension that we call Christoffel graphs. Christoffel graphs
when d = 2 correspond to well-known Christoffel words. We show that Christoffel graphs
have similar properties to those of Christoffel words: symmetry of their central part and
conjugation with their reversal. Our main result extends Pirillo’s theorem (characterization
of Christoffel words which asserts that a word amb is a Christoffel word if and only if it is
conjugate to bma) in arbitrary dimension. In the generalization, the map amb 7→ bma is
seen as a flip operation on graphs embedded in Zd and the conjugation is a translation. We
show that a fully periodic subgraph of the hypercubic lattice is a translate of its flip if and
only if it is a Christoffel graph.

1 Introduction

This article is a contribution to the study of discrete planes and hyperplanes in any dimension d.
We study only rational hyperplanes, that is, those which are defined by an equation with rational
coefficients. We extract from such an hyperplane a finite pattern that we call a Christoffel graph.
We show that they are a generalization of Christoffel words.

Discrete planes were introduced by [21] and further studied [1, 11, 14, 23]. Recognition algo-
rithms were proposed in [15, 20, 22]. See [10] for a complete review about many aspects of
digital planarity, such as characterizations in arithmetic geometry, periodicity, connectivity and
algorithms. Discrete planes can be seen as an union of square faces. Such stepped surface,
introduced in [16, 17] as a way to construct quasiperiodic tilings of the plane, can be generated
from multidimensional continued fraction algorithms by introducing substitutions on square
faces [2, 4].

While discrete planes are a satisfactory generalization of Sturmian words, it is still unclear what
is the equivalent notion of Christoffel words in higher dimension. In [13, Fig. 6.6 and 6.7],
fundamental domain of rational discrete planes are constructed from the iteration of generalized
substitutions on the unit cube. Recently [12] generalized central words to arbitrary dimension
using palindromic closure. In both cases the representation is nonconvex and has a boundary
like a fractal.

We propose to extend the definition of Christoffel words to directed subgraphs of the hypercubic
lattice in arbitrary dimension that we call Christoffel graphs. A similar construction, called
roundwalk, but serving a different purpose was given in [6] producing multi-dimensional words
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that are closely related to k-dimensional Sturmian words. Christoffel graphs when d = 2 cor-
respond to Christoffel words. Due to its periods, the d-dimensional Christoffel graph can be
embedded in a (d − 1)-torus and when d = 3, the torus is a parallelogram. This extension is
motivated by Pirillo’s theorem which asserts that a word amb is a Christoffel word if and only if
it is conjugate to bma. In the generalization, the map amb 7→ bma is seen as a flip operation on
graphs embedded in Zd and the conjugation is replaced by some translation. When d = 3, our
flip corresponds to a flip in a rhombus tiling [3,8,9]. We show that these Christoffel graphs have
similar properties to those of Christoffel words: symmetry of their central part (Lemma 10) and
conjugation with their reversal (Corollary 13). Our main result is Theorem 14 which extends
Pirillo’s theorem in arbitrary dimension.

This is an extended abstract to the preprint [18], the latter containing the proofs to each of the
result presented below and more.

2 Christoffel words and discrete planes

2.1 Christoffel words

Recall that Christoffel words are obtained by discretizing a line segment in the plane as follows:
let (p, q) ∈ N2 with gcd(p, q) = 1, and let S be the line segment with endpoints (0, 0) and (p, q).
The word w ∈ {a, b}∗ is a lower Christoffel word if the path induced by w starting at the origin

(0, 0)

(8, 5)

Figure 1: The lower Christoffel word w = aabaababaabab.

ends at (p, q), is under S and the path and the segment S delimit a polygon with no integral
interior point. An upper Christoffel word is defined similarly, by taking the path which is above
the segment. A Christoffel word is a lower Christoffel word. See Figure 1 and reference [5].
An astonishing result about Christoffel words is the following characteristic property given by
Pirillo [19]. Recall that two words w and w′ are conjugate if there exist two words u and v such
that w = uv and w′ = vu.

Theorem 1 (Pirillo). A word w = amb ∈ {a, b}∗ is a Christoffel word if and only if amb and
bma are conjugate.

In this article, we generalize Theorem 1 to dimension d ≥ 3.

3 Discrete hyperplane graphs

Let a1, . . . , ad be relatively prime positive integers and s = ‖a‖1 =
∑
ai be their sum. We denote

a = (a1, a2, . . . , ad) ∈ Nd. We define the mapping Fa : Zd → Z/sZ sending each integral vector
(x1, . . . , xd) onto

∑
i aixi mod s. We identify Z/sZ and {0, 1, . . . , s− 1}. A total order on Z/sZ

is defined correspondingly; it is this order that is used in the definition of Ha below. The map Fa



induces a Zd-action x ·g = g+Fa(x) on the cyclic group Z/sZ, so that it is a rational case of the
Z2-action on the torus as studied in [4,7]. We consider Ed = {(u,u+ei) : u ∈ Zd and 1 ≤ i ≤ d},
the set of oriented edges of the hypercubic lattice. Note that the set Ed also corresponds to the
Cayley graph of Zd with generators ei for all i with 1 ≤ i ≤ d.

3.1 The Christoffel graph Ha

The Christoffel graph Ha of normal vector a is the subset of edges of Ed increasing for the
function Fa:

Ha = {(u,u + ei) ∈ Ed : Fa(u) < Fa(u + ei)}.
An example of the graph Ha when d = 2 and a = (a1, a2) = (2, 5) is shown in Figure 2 where
the edges are represented in blue and a small red circle surrounds the origin. A first observation
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Figure 2: The graph Ha with a = (2, 5).

is stated in the next lemma.

Lemma 2. The graph Ha is invariant under the translation by the vector
∑d

i=1 ei = (1, 1, . . . , 1).

Definition 3 (Image). Let f : Zd → S be an homomorphism of Z-module. For some subset of
edges X ⊆ Ed, we define the image by f of the edges X by

f(X) = {(f(u), f(v)) | (u,v) ∈ X}.

This definition allows to define the graphs Ia and Ga as projections of Ha.

3.2 The graph Ia

Let π be the orthogonal projection from Rd onto the hyperplane D of equation
∑
xi = 0. We

consider the directed graph whose set of edges is Ia = π(Ha). The graphs Ia for a = (a1, a2) =
(2, 5) and a = (a1, a2, a3) = (2, 3, 5) are shown in Figure 3. Note that the orientation of an edge
is redundant when d = 3, since each edge is oriented as one of the vector hi.

Proposition 4. The graph Ia produces a tiling of D by d types of (d−1)-dimensional parallelo-
topes.

3.3 The graph Ga
Let d ≥ 2 be an integer and a as before. The graph Ga of normal vector a ∈ Zd is the directed
graph Ga = Fa(Ha). It is also equal to

Ga = {(k, k + ai) | k ∈ Z/sZ, 1 ≤ i ≤ d and k < k + ai}.

Examples are shown at Figure 4.
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Figure 3: Left: the graph Ia when a = (2, 5). Right: the graph Ia when a = (2, 3, 5). The label at each
vertex is its image under Fa.
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Figure 4: Some Christoffel graphs in dimension d = 3. Legs are the edges of the Christoffel graphs
incident to zero. Every other edges constitute the body of the Christoffel graph.

4 Flip, reversal and translation

In this short section, we define the flip, reversal and translate of set of edges X ⊆ Ed.

Definition 5 (edges of Ed incident to zero). Let d ≥ 2 be an integer and a ∈ Zd be a vector of
relatively prime positive integers. The set of edges of Ed incident to zero is

Q = {(u,v) ∈ Ed : Fa(u) = 0 or Fa(v) = 0}.

Definition 6 (body, legs). Let X ⊆ Ed. The set X \Q is the body and the edges of X ∩Q are
the legs of X.

See Figure 4 where the legs of graphs Ga are represented in red, and the body in black.

Definition 7 (flip). For a subset of edges X ⊆ Ed, we define the flip operation which ex-
changes edges incident to zero:

flip : X 7→ (X \ Q) ∪ (Q \X).

We see that flip(X) exchanges the legs of X and keeps the body of X invariant. The flip is
an operation which generalizes the function amb 7→ bma defined for Christoffel words. While
we define the flip on graphs, it can also be seen as a flip in a rhombus tiling when d = 3 [3,8,9].



Definition 8 (Reversal, Translate). Let X ⊆ Ed be a subset of edges. We define the reversal
−X of X and the translate X + t, for some t ∈ Zd, of X as

−X = {(−v,−u) | (u,v) ∈ X} and X + t = {(u + t,v + t) | (u,v) ∈ X}.

5 Flipping is translating

In this section, we show that the flip of the Christoffel graph Ha is a translate of Ha; this is a
generalization of one implication of Theorem 1 (it generalizes the fact that a Christoffel word
amb is conjugate to to bma). We also show that the body of Ha is symmetric (generalizes
the fact that central words are palindromes), the reversal of Ha is equal to its flip (generalizes

the fact that the reversal ãmb of a Christoffel word is equal to bma) and as a consequence we
obtain that a Christoffel graph is a translate of its reversal (a Christoffel word is conjugate to
its reversal).

Lemma 9 (Legs of Ha). An edge (u,v) is a leg of Ha if and only if Fa(u) = 0.

Lemma 10. The body of Ha is symmetric, i.e., −(Ha \ Q) = Ha \ Q.

Lemma 11. The reversal of Ha is equal to its flip, i.e., −Ha = flip(Ha).

Proposition 12. Let t ∈ Zd be such that Fa(t) = 1. The translate by t of Ha is equal to its
flip, i.e., Ha + t = flip(Ha).

Proposition 12 is illustrated in Figure 5 and Figure 6.

Corollary 13. Let t ∈ Zd be such that Fa(t) = 1. Then −Ha = Ha + t.
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Figure 5: Left: the graph Ha with a = (2, 5). Right: flip(Ha).

6 Higher-dimensional Pirillo’s theorem

This section considers the converse of Proposition 12 and contains the main result of this article
which generalizes Pirillo’s theorem (Theorem 1) to arbitrary dimension: a graph M ⊆ Ed is a
translate of its flip if and only if it is a Christoffel graph. In order to do so, we need to extend
the definition of the Christoffel graph Ha,ω for a vector a ∈ Zd and width ω.

6.1 The graph Ha,ω

Again let a ∈ Nd be a vector of relatively prime positive integers and s = ‖a‖1 =
∑
ai. Let

ω ∈ N be some width such that s/ω is a positive integer strictly smaller than the dimension d:
0 < s/ω < d. We define the mapping Fa,ω : Zd → Z/ωZ sending each integral vector (x1, . . . , xd)
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Figure 6: Left: the graph Ia with a = (4, 6, 7). Right: flip(Ia). Consider the Christoffel parallelogram
P with vertices labeled by 0 embedded in Ia. The parallelogram P also appears in the graph flip(Ia)
with vertices labeled by 1.

onto
∑

i aixi mod ω. We identify Z/ωZ and {0, 1, · · · , ω− 1}. A total order on Z/ωZ is defined
correspondingly. The Christoffel graph of normal vector a ∈ Nd of width ω is the subset of edges
Ha,ω ⊆ Ed defined by

Ha,ω = {(u,v) ∈ Ed | Fa,ω(u) < Fa,ω(v)}.
This graph is related but does not correspond exactly to discrete plane of width ω. In fact, Ha,ω

can be obtained by the superposition of s/ω discrete plane of width ω. The definition of Ha,ω

is motivated by Pirillo’s theorem, because this is what allows to generalize Pirillo’s theorem in
arbitrary dimension (see Theorem 14). Of course if ω = s, then Ha,ω = Ha is the Christoffel
graph of normal vector a. Also, if d = 2 then s = ω. If d = 3, then either ω = s or ω = s/2.

Theorem 14 (d-dimensional Pirillo’s theorem). Let K be a subgroup of finite index of Zd

such that
∑d

i=1 ei ∈ K. Let M ⊆ Ed be a subset of edges invariant for the group of translations
K such that the edges of M incident to zero mod K are Q ∩M = {(0, ei) | 1 ≤ i ≤ d} + K.
There exists t ∈ Zd such that M = flip(M + t) if and only if M = Ha,ω is the Christoffel graph
of normal vector a and width ω.

The result is illustrated in Figure 7 by an example when d = 3.
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Figure 7: Left: the Christoffel graph Ha for the vector a = (3, 7, 8). It satisfies the equation M =
flip(M + t) for the translation vector t = e3 − e2. Right: the complement of the reversal of the
Christoffel graph for the vector b = (3, 7, 8), i.e. Ed \ −Hb. It corresponds to the Christoffel graph
Ha,ω for the vector a = (15, 11, 10) and width ω = 18. It satisfies the equation M = flip(M + t) for
the translation vector t = e2 − e3. They represent the only two possibilities for a pattern M satisfying
M = flip(M + t) when d = 3 and K is the subgroup of Z3 given by 〈(0, 4, 1), (−2, 0, 3), (1, 1, 1)〉.
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