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Abstract

We study the combinatorial properties and the problem of generating
exhaustively double square tiles, i.e. polyominoes yielding two distinct
periodic tilings by translated copies such that every polyomino in the
tiling is surrounded by exactly four copies. We show in particular that
every prime double square tile may be obtained from the unit square by
applying successively some invertible operators on double squares. As a
consequence, we prove a conjecture of Provençal and Vuillon [17] stating
that these polyominoes are invariant under rotation by angle π.

Keywords: Tilings, generation, polyomino, double square tile, palin-
dromes.

1 Introduction

When considering the problem of deciding whether a given polygon tiles the
plane, it is convenient to restrict ourselves to polyominoes, that is, subsets of
the square lattice Z2 whose boundary is a non-crossing closed path (see [14] for
more on tilings and [7] for related problems). Here, we consider tilings obtained
by translation of a single polyomino, called exact in [20]. Paths are conveniently
described by words on the alphabet {0,1,2,3}, representing the elementary grid
steps {→, ↑,←, ↓}. Beauquier and Nivat [1] characterized exact polyominoes by
showing that the boundary word b(P ) of such a polyomino satisfies the equation

b(P ) = X ·Y ·Z ·X̂ · Ŷ ·Ẑ, where Ŵ is the path traveled in the direction opposite

to that of W (the paths W and Ŵ are said homologous). From now on, this
condition is referred to as the BN-factorization. In this factorization, one of
the variables may be empty, in which case P is called a square, and hexagon
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otherwise. Note that a single polyomino may lead to several distinct tilings of
the plane: for instance the n × 1 rectangle does it in n − 1 distinct ways as a
hexagon (see Figure 1).

Figure 1: The three hexagonal tilings of the 4× 1 rectangle.

However, it was recently established [5] that an exact polyomino tiles the
plane as a square in at most two distinct ways. A polyomino having exactly two
distinct square tilings is called double square [17] and there is a linear time algo-
rithm to find all the square factorizations from its boundary word [11]. Double
squares have a peculiar combinatorial structure and motivated developments in
equations on words involving periodicities and palindromes [3] Christoffel and
Fibonacci tiles were introduced in [4] as examples of infinite families of double
squares (see Figure 2) but do not characterize completely the class of double
square tiles (see Figure 3).

(a)

(b)

Figure 2: (a) A Christoffel tile yields two distinct nonsymmetric square tilings of the
plane. (b) The Fibonacci tile of order two with its two symmetric square tilings. Note
that both tiles are invariant under a rotation of angle π.

In this article, double square tiles are represented by DS-factorizations: fac-
torization of the boundary into eight parts. We show that any DS-factorization
of a double square tile can be reduced to a singular DS-factorization using
only two reduction operators (Theorem 22). It appears that these operators
are invertible which allows one to generate double square tiles from singular
DS-factorizations. An algorithm for the generation of double square tiles is pro-
posed, allowing thus to generate Christoffel and Fibonacci tiles under common
rules. Moreover, we prove that every prime double square can be reduced to
the unit square by using some reduction operators (Theorem 30). By prime, we



Figure 3: Some double square tiles that are neither Christoffel nor Fibonacci tiles.
The two square-factorizations in each case are represented by black and white dots.
The boundary of the polyomino is traveled counter-clockwise and ends with the arrow.

mean a polyomino that is not obtained from a smaller one by replacing each unit
cell by another polyomino (see Figure 15, Page 25). This allows to show that
the BN-factorizations of prime double squares consist of palindromes, solving
positively a conjecture of Provençal and Vuillon [17]:

Theorem 1. If ABÂB̂ and XY X̂Ŷ are the BN-factorizations of a prime double
square D, then A, B, X and Y are palindromes or equivalently D is invariant
under a rotation by angle π.

The article is divided as follows. Definitions, notations and some basic re-
sults on combinatorics on words and discrete paths are presented in Section 2.
The concept of double square factorization is introduced in Section 3 and is
followed by many obervations and lemmas in preparation of the next sections.
Reduction of double squares is considered in Section 4, while generation opera-
tors are defined and studied in Section 5, where some algebraic properties are
also established. Finally, prime double squares, homologous morphisms and the
proof of Theorem 1 may be found in Section 6.

The results presented below were initially observed through computer ex-
ploration. Consequently, an implementation in Python of the different opera-
tors and algorithms involved will be made available in the open-source software
Sage [16].

2 Preliminaries

The usual terminology and notation on words is from Lothaire [15]. An alpha-
bet A is a finite set whose elements are letters. A finite word w is a function
w : [1, 2, . . . , n] → A, where wi is the i-th letter, 1 ≤ i ≤ n. The length of w,
denoted by |w|, is the integer n. The length of the empty word denoted by ε
is 0. The free monoid A∗ is the set of all finite words over A. The reversal of
w = w1w2 · · ·wn is the word w̃ = wnwn−1 · · ·w1. Given a nonempty word w,
let Fst(w) = w1 and Lst(w) = wn denote respectively the first and last letter
of the word w. A word u is a factor of another word w if there exist x, y ∈ A∗
such that w = xuy. If x = ε, then u is called prefix and if y = ε, it is called a



suffix of w. Let u be a prefix of some word w. We denote by u−1w the unique
word such that uu−1w = w. Roughly speaking, u−1w is the word obtained from
w by deleting the prefix u. The notation wu−1 is defined similarly for u a suffix
of w. We denote by |w|u the number of occurrences of u in w. Two words u
and v are conjugate, written u ≡ v or sometimes u ≡|x| v, when x, y are such
that u = xy and v = yx. Conjugacy is an equivalence relation and the class of
a word w is denoted w .

A power of a word u is a word of the form uk for some integer k ∈ N. It
is convenient to set u0 = ε for each word u. When k > 1 is an integer we say
that uk is a proper power of u. A nonempty word is called primitive if it is not
a proper power of another word. Let u be a nonempty word; then there exist
a unique primitive word z and a unique integer k ≥ 1 such that u = zk. The
word z is called the primitive root of u.

Given two alphabets A and B, a morphism is a function ϕ : A∗ → B∗

compatible with concatenation, that is, ϕ(uv) = ϕ(u)ϕ(v) for any u, v ∈ A∗. It
is clear that a morphism is completely defined by its action on the letters of A.

In this article, the alphabet F = {0,1,2,3} is considered as the additive
group of integers modulo 4. Basic transformations on F are rotations ρi : x 7→
x+ i and reflections σi : x 7→ i−x, which extend uniquely to morphisms on F∗.
Another useful morphism, denoted by ·, is the morphism defined by 0↔ 2 and
1 ↔ 3. Given a nonempty word w ∈ F∗, the first differences word ∆(w) ∈ F∗
of w is

∆(w) := (w2 − w1) · (w3 − w2) · · · (wn − wn−1). (1)

Given two nonempty word w, z ∈ F∗, it is convenient to compare the last letter
of w with the first letter of z. Hence, we define ∆(w, z) ∈ F as the letter given
by

∆(w, z) := ∆(Lst(w)Fst(z)) = ∆(wnz1) (2)

One may verify that ∆(wz) = ∆(w)∆(w, z)∆(z). Words in F∗ are interpreted
as paths in the square grid as usual (See Figure 4), so that we indistinctly talk
of any word w ∈ F∗ as the path w.
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Figure 4: (a) The path w = 300121221. (b) Its first differences word ∆(w) =
10113103. (c) Its homologous ŵ = 300303221.

Moreover, the word ŵ := ρ2(w̃) is homologous to w, that is, described
in direction opposite to that of w (see Figure 4). Notice that the opera-
tor ·̂ is an involutory antimorphism. A word u ∈ F∗ may contain factors in
C = {02,20,13,31}, corresponding to cancelling steps on a path. Nevertheless,
each word w can be reduced in a unique way to a word w′, by sequentially
applying the rewriting rules in {u 7→ ε|u ∈ C}. The reduced word w′ of w is



nothing but a word in P = F∗ \ F∗CF∗. We define the turning number1 of w
by

T (w) =
|∆(w′)|1 − |∆(w′)|3

4
, (3)

where w′ is the reduced word of w. Given two nonempty path w and z, it is
practical as for the first difference word to compute the turning number of the
word of length 2 consisting of the last letter of w and of the first letter of z.
Thus, we define

T (w, z) := T (Lst(w)Fst(z)) (4)

One may verify that T (wz) = T (w)+T (w, z)+T (z). The turning number also
satisfies T (w) = −T (ŵ) and T (w, z) = −T (ẑ, ŵ).

A path w is closed if it satisfies |w|0 = |w|2 and |w|1 = |w|3, and it is simple
if no proper factor of w is closed. A boundary word is a simple and closed
path, and a polyomino is a subset of Z2 contained in some boundary word. It
is convenient to represent each closed path w by its conjugacy class w , also
called circular word. An adjustment is necessary to the function T , for we take
into account the closing turn. The first differences also noted ∆ is defined on
any closed path w by setting

∆( w ) =

{
∆(w) ·∆(w,w) if w is nonempty,

ε if w is empty.
(5)

which is also a circular word. By applying the same rewriting rules, a circular
word w is circularly-reduced to a unique word w′ . If w is a closed path,
then the turning number1 of w is

T ( w ) =
|∆( w′ )|1 − |∆( w′ )|3

4
. (6)

It corresponds to its total curvature divided by 2π. Clearly, the turning number
T ( w ) of a closed path w belongs to Z (see [9, 10]). In particular, the Daurat-
Nivat relation [12] is rephrased as follows.

Proposition 2. The turning number of a boundary word w is T ( w ) = ±1.

Now, we may define orientation: a boundary word w is positively oriented
(counterclockwise) if its turning number is T ( w ) = 1. In general, if XY X̂Ŷ
is a path (simple or not), its turning number may be computed from its square
factorization by the formula

T ( XY X̂Ŷ ) = T (X,Y ) + T (Y, X̂) + T (X̂, Ŷ ) + T (Ŷ , X). (7)

As a consequence, every square tile satifies the following condition.

Proposition 3. Let w ≡ XY X̂Ŷ be the boundary word of a square, then

∆(X,Y ) = ∆(Y, X̂) = ∆(X̂, Ŷ ) = ∆(Ŷ , X) = α

where α = 1 if w is positively oriented, α = 3 otherwise.

1In [9, 10], the authors introduced the notion of winding number of w which is 4T (w)



The following result is easy to check.

Proposition 4. Let w ≡ XY X̂Ŷ be an oriented boundary word of a square.
Then Fst(X) = Lst(X), Fst(Y ) = Lst(Y ) and the first letter of X, X̂, Y , Ŷ
are mutually distinct, that is,

{0,1,2,3} = {Fst(X),Fst(X̂),Fst(Y ),Fst(Ŷ )}.

Proof. By Proposition 3, we have Lst(X) + 1 = Fst(Y ). Similarly, Lst(Y ) +

1 = Fst(X̂), but Fst(X̂) = Lst(X) + 2. By subtracting 1 on each side, we
get Lst(Y ) = Lst(X) + 1. Hence, Lst(Y ) = Fst(Y ). In the same way, we get
Lst(X) = Fst(X). From these equations, it follows that the set of first letters

of X, Y , X̂ and Ŷ is {0,1,2,3}.

3 Double square factorizations

In this section, we introduce the useful notion of double square factorization in
order to describe all double squares. Its definition is motivated by the following
result stating that the BN-factorizations of a double square must alternate.

Lemma 5. [11, 17] If the boundary word of an exact polyomino satisfies ABÂB̂ ≡d

XY X̂Ŷ , with 0 ≤ d ≤ |A| and {A,B, Â, B̂} 6= {X,Y, X̂, Ŷ }, then the factoriza-
tion must alternate, i.e., 0 < d < |A| < d+ |X|.

Hence, we must have the situation depicted in Figure 5. Moreover, it is useful

A B Â B̂

w0 w1 w2 w3 w4 w5 w6 w7 w0

X Y X̂ Ŷ

d d

Figure 5: Finer factorization of a double square.

to encode double squares while keeping track of their (two) factorizations. For
that purpose, we refine the BN-factorization as follows.

Definition 6. A double square factorization ( DS-factorization for short) is an
8-tuple (wi)i∈Z8

, wi ∈ F∗, such that |wi| = |wi+4| for i ∈ {0, 1, 2, 3} and

(i) ŵ0w1 = w4w5; (iii) ŵ2w3 = w6w7;
(ii) ŵ1w2 = w5w6; (iv) ŵ3w4 = w7w0.

Its boundary is the word w0w1w2w3w4w5w6w7.

Observe that every DS-factorization (wi)i∈Z8 is uniquely determined by the
words w0, w1, w2 and w3. The length of a DS-factorization S = (wi)i∈Z8 is
naturally defined as the length of its boundary |S| = |w0w1 · · ·w7|.



(0,10,1,21,2,32,3)

(a)

(ε, ε,0101,01, ε, ε,3232,32)

(b)

(ε,0,10,1, ε,2,32,3)

(c)

(ε,03010, ε,1011, ε,23212, ε,3323)

(d)

Figure 6: Examples of DS-factorizations. (a) The X pentomino (following Golomb
notation [13]) yields the smallest nondenegerate DS-factorization. (b) A flat DS-
factorization whose corresponding circular path reduces to ε . (c) A degenerate
DS-factorization: two pairs of black and white dot are the same. (d) A singular
DS-factorization: the black and white dots coincide pairwise.

Some DS-factorizations play a particular role in the remainder of this article.
For this purpose, it is convenient to introduce further definitions. Thus, we say
that a DS-factorization S is degenerate if there exists i such that wi is empty;
flat if there exists i such that wiwi+1 is empty; singular if there exists i such that
wi−1 and wi+1 are both empty. A singular DS-factorization is the unit square if
its boundary word is conjugate to 0123 or 3210. The choice of these adjectives
are justified by the following remarks: if S is degenerate, the eight points of the
two BN-factorizations partially coincide; if S is flat, then its boundary is of the
form XX̂; if S is singular, then both square factorizations correspond to the
same one. Of course, if S is singular or flat it is also degenerate. The different
cases are illustrated in Figure 6.

Example 7. Clearly, each double square yields a nonsingular DS-factorization.
Indeed, consider the double square given in Figure 7: the black and white dots
together with the ending arrow uniquely determine the DS-factorization

(3,03010303,01030,10103010,1,21232121,23212,32321232).

In what follows we exhibit the properties satisfied by DS-factorizations. To
fix the notation, hereafter S = (wi)i∈Z8

denotes a DS-factorization, and all
indices are taken in Z8. The first result concerns periodicity. Let

di = |wi−1|+ |wi+1|. (8)



Figure 7: A double square and its DS-factorization. The black and white dots distin-
guish the two BN-factorizations.

Observe that if S is nonsingular, then di 6= 0 for all i ∈ Z8. Moreover, di = di+2,
since |wi| = |wi+4|.

Lemma 8. Let S be a DS-factorization and i ∈ Z8 such that di 6= 0. Then the
following properties hold:

(i) There exist unique words ui and vi and a unique nonnegative integer ni
such that

ŵi−3wi−1 = uivi (9)

wi = (uivi)
niui (10)

wi+1ŵi+3 = viui, (11)

where 0 ≤ |ui| < di and 0 < |vi| ≤ di;

(ii) di is a period of wi;

(iii) ni = ni+4, |ui| = |ui+4| and |vi| = |vi+4|.

The proof of this lemma relies on the following well-known fact:

Proposition 9. [15] Let x, z be two nonempty words and y be a word such that
xy = yz. Then there exist unique words u, v and a unique integer i ≥ 0 such
that x = uv, y = (uv)iu and z = vu.

Proof of Lemma 8. (i) It follows from the definition of DS-factorization that

ŵi−3wi−1wi = ŵi−3ŵi+4ŵi+3 = ŵi+5ŵi+4ŵi+3 = wiwi+1ŵi+3.

The two extreme members of this sequence of equalities satisfy an equation of
the form xy = yz, with x = ŵi−3wi−1 6= ε, y = wi and z = wi+1ŵi+3 6= ε. By
Proposition 9, the three equalities follow.

(ii) Since di = |wi+1|+ |wi+3| = |ui|+ |vi| and wi = (uivi)
niui, we conclude

that di is a period of wi.
(iii) Note that ni and |ui| are respectively the quotient and the remainder

of |wi| by di 6= 0. Since |wi| = |wi+4| and di = di+2 = di+4, we conclude that
ni = ni+4 and |ui| = |ui+4|. Finally |vi| = di− |ui| = di+4− |ui+4| = |vi+4|.

For the remainder of this article, we shall use the variables di, ni, ui and vi
to designate the numbers and words with the same label as in Lemma 8. For



i wi ui vi |wi| di ni
0 3 3 030103032321232 1 16 0
1 03010303 03 0103 8 6 1
2 01030 01030 10103010303 5 16 0
3 10103010 10 1030 8 6 1
4 1 1 212321210103010 1 16 0
5 21232121 21 2321 8 6 1
6 23212 23212 32321232121 5 16 0
7 32321232 32 3212 8 6 1

Table 1: Values of the variables for Example 7.

w0

w1

w2

w3

w4

w5

w6

w7u0

u1

u2

u3

u4

u5

u6
u7

v0

v1 v2

v3

v4

v5v6
v7

Figure 8: The paths wi, ui and vi for each i ∈ Z8 for Example 7.

example, values of those variables for the double square defined in Example 7 are
in the Table 1 and are illustrated in Figure 8. Moreover, a direct consequence
of Lemma 8 is that the period di extends beyond wi and that many commuting
properties of the words ui, vi and wi are verified. Those relations are used
in the next sections to show that some operations on double square tiles are
well-defined.

Lemma 10. Suppose that there exists i ∈ Z8 such that di 6= 0.

• Then di is a period of wi−1wiwi+1.

• The following group of equalities hold:

uivi · wi = wi · viui, (12)

wi−1 · uivi = ûi+4v̂i+4 · wi−1, (13)

viui · wi+1 = wi+1 · v̂i+4ûi+4. (14)



• The following group of equalities hold:

wi−1ui = ûi+4ŵi+3, (15)

uiwi+1 = ŵi+5ûi+4, (16)

wi+1v̂i+4 = viŵi+5, (17)

v̂iwi+3 = ŵi+7vi+4. (18)

Proof. Since di = |uivi| is a period of

(uivi)
ni+2 = ŵi−3wi−1 · wi · wi+1ŵi+3,

it is also a period of wi−1wiwi+1.
Equation (12) is an immediate consequence of Equation (10). We prove

Equations (13) and (14) by Lemma 8 applied to indices i and i+ 4:

wi−1uivi = wi−1ŵi−3wi−1 = ûi+4v̂i+4wi−1,

viuiwi+1 = wi+1ŵi+3wi+1 = wi+1v̂i+4ûi+4.

Using Lemma 8, we obtain Equations (15) and (17) by comparing the suffixes
and prefixes of the following equality

wi+1v̂i+4 · ûi+4ŵi+3 = wi+1ŵi+3wi+1ŵi+3 = viuiviui = viŵi−3 · wi−1ui.

We obtain Equations (16) and (18) similarly from

ŵi−3ûi+4 · v̂i+4wi−1 = ŵi−3wi−1ŵi−3wi−1 = uiviuivi = uiwi+1 · ŵi+3vi.

The numbers ni correspond to the number of repetitions of the patterns
according to the period di in the words wi. Some natural constraints apply to
them.

Lemma 11. Assume that S is nonsingular and ni 6= 0 for some i ∈ Z8. Then
ni+1 = ni+3 = ni+5 = ni+7 = 0.

Proof. We proceed by contradiction, i.e. we assume that there exists some i ∈
Z8 such that ni, ni+1 6= 0. Then |wi| ≥ |wi−1|+|wi+1| and |wi+1| ≥ |wi|+|wi+2|.
Therefore,

|wi| ≥ |wi−1|+ |wi+1| ≥ |wi−1|+ |wi|+ |wi+2| > |wi|, (19)

since |wi−1| = |wi+3| and |wi+2| cannot both be zero, S being nonsingular. The
Inequalities (19) yield |wi| > |wi|, which is absurd. Similarly, it can be shown
that ni−1 = 0 and, using the identity ni = ni+4, the result follows.

Before stating and proving Lemma 13, a technical observation is needed.

Proposition 12. Let A,B,w be any words and k > 0 be an integer. If Akw =
wBk, then Aw = wB.



Proof. First we remark that |A| = |B|. If A and B are empty, the result is
obvious. Suppose |A| = |B| > 0. By induction, one shows that if Akw = wBk,
then Aknw = wBkn for all positive integer n. Let n be an integer such that
|Akn−1| > |w|. Then w is a prefix of Akn−1 and Aw is a prefix of Akn, so that
Aw is a prefix of Aknw = wBkn. Hence, Aw = wB.

The next lemma deals with DS-factorization presenting strong periodic prop-
erties.

Lemma 13. Assume that di 6= 0 divides |wi| and wi+2 6= ε. Then

(i) ui and ui+4 are empty and ni = ni+4 = |wi|/di,

(ii) wi+1 = ŵi+5, wi+3 = ŵi+7, wi = (wi+1wi−1)ni and wi+4 = (wi+5wi+3)ni+4 ,

(iii) there exist two nonempty primitive words p, q ∈ F∗ and integers k ≥ 2 and
` ≥ 1 such that

wi+1wi+2wi+3 = pk and wi+6 = p̂ `,

wi+5wi+6wi+7 = qk and wi+2 = q̂ `

where |p| = |q| divides g = gcd(|wi+2|, di+2),

(iv) p and q̂ are conjugate: pwi+1 = wi+1q̂ and q̂wi+3 = wi+3p,

(v) the boundary word of S is not simple.

Proof. (i) From Lemma 8, ui is empty because its length is equal to the remain-
der of the division of |wi| by di. Also the quotient is ni.

(ii) From Lemma 8, we have that

ŵi−3wi−1 = uivi = ε · vi = vi · ε = viui = wi+1ŵi+3.

Then wi+1 = ŵi−3 = ŵi+5 and wi+3 = ŵi−1 = ŵi+7. Also,

wi = (uivi)
niui = (uivi)

ni = (ŵi−3wi−1)ni = (wi+1wi−1)ni ,

wi+4 = (ui+4vi+4)ni+4ui+4 = (ui+4vi+4)ni+4 = (ŵi+1wi+3)ni+4 = (wi+5wi+3)ni+4 .

(iii) Using assertion (ii) and Definition 6, we can write

wi+1wi+3ŵi+6 = wi+1ŵi+7ŵi+6 = wi+1wi+2wi+3 = ŵi+6ŵi+5wi+3 = ŵi+6wi+1wi+3.

Since this equation has the form ab = ba, with a = wi+1wi+3 6= ε and b =
ŵi+6 6= ε, we have from Lothaire [15] that there exists P ∈ F∗ such that

a = wi+1wi+3 = P k1 and b = ŵi+6 = P k2

with |P | = gcd(|b|, |a|) = g. In particular, wi+6 = P̂ k2 and wi+1wi+2wi+3 =
P k1+k2 . Let p be the primitive root of P , i.e. the smallest word p such that
P = pn with n ∈ N. We have that wi+1wi+2wi+3 = pn(k1+k2) = pk and



wi+6 = p̂ nk2 = p̂ `, where k ≥ 2 and ` ≥ 1 are integers. The word wi+5wi+6wi+7

is a conjugate of

wi+6wi+7wi+5 = wi+6wi+7ŵi+1 = ŵi+3ŵi+2ŵi+1 = ŵi+3ŵi+2ŵi+1 = p̂ k.

Then there is a primitive word q ∈ F∗ conjugate of p̂ such that wi+5wi+6wi+7 =
qk. Moreover qk = wi+5wi+6wi+7 = ŵi+2ŵi+1wi+7 so that ŵi+2 = q` because
|q| = |p| divides |wi+2| = |wi+6|.

(iv) We have

p`wi+1 = ŵi+6wi+1 = ŵi+6ŵi+5 = wi+1wi+2 = wi+1q̂
`,

wi+3p
` = wi+3ŵi+6 = ŵi+7ŵi+6 = wi+2wi+3 = q̂ `wi+3.

From Proposition 12, we conclude that pwi+1 = wi+1q̂ and q̂wi+3 = wi+3p.
(v) Without loss of generality, assume that i = 0. Since p and q̂ are conju-

gate, it follows that pq and qp are closed paths. Hence, it suffices to show that
pq or qp is a proper factor the the boundary word of S. From (ii) and (iii), we
know that the boundary word w = w0w1 · · ·w7 of S is

w = w0p
kw4q

k = (w1ŵ3)n0pk(ŵ1w3)n4qk.

If n0 = n4 = 0, then w = pkqk so that pq and qp both occur in w . Otherwise,
assume that n0, n4 ≥ 1. Since |p| = |q| divides d2 = |w1| + |w3|, then either
|p| ≤ |w1| or |p| ≤ |w3|. If |p| ≤ |w1|, then p is a prefix of w1. Therefore w ends
with q and starts with p so that qp occurs in w . Similarly, if |p| ≤ |w3|, then
p is a suffix of w3. Thus w ends with pqk so that pq occurs in w .

Example 14. If (|w0|, |w1|, |w2|, |w3|) = (5, 4, 3, 8), a double square factoriza-
tion might be of the following form:

i wi ui vi |wi| di ni
0 32323 32323 2323010 5 12 0
1 2323 2323 2323 4 8 0
2 232 232 101012323 3 12 0
3 10101232 10101232 8 8 1
4 10101 10101 0101232 5 12 0
5 0101 0101 0101 4 8 0
6 010 010 323230101 3 12 0
7 32323010 32323010 8 8 1

Here, we have that d3 = 8 divides |w3| = 8. In this case, Lemma 13 applies and
we must have that u3 is empty, n3 = 1, w4 = ŵ0, w6 = ŵ2, w3 = w4w2 and
w7 = w0w6. Moreover, there exist two primitive words p = 10 and q = 32 and
integers k = 6 and ` = 2 such that

w4w5w6 = pk = (10)6 and w1 = p̂ ` = (1̂0)2,

w0w1w2 = qk = (32)6 and w5 = q̂ ` = (3̂2)2



where |p| = |q| = 2 divides g = gcd(|w5|, d5) = gcd(4, 8) = 4. Observe that
|p| 6= g. Also, p = 10 and q̂ = 01 are conjugates:

pw4 = 10 · 10101 = 10101 · 01 = w4q̂,

q̂w6 = 01 · 010 = 010 · 10 = w6p.

Finally, we verify that pq = 1032 and qp = 3210 are closed proper factors of
the boundary word.

The turning number of a DS-factorization S = (wi)i∈Z8
is naturally defined

from the circular word it defines: T (S) = T ( w0w1w2w3w4w5w6w7 ). When-
ever S is nonsingular, its turning number can be computed from both its square
factorizations using Equation (7):

T (S) =
∑

i∈{0,2,4,6}
T (wi−2wi−1, wiwi+1) =

∑

i∈{1,3,5,7}
T (wi−2wi−1, wiwi+1) (20)

These formulas are used in Lemma 20. Proposition 4 translates directly as
follows for DS-factorizations.

Lemma 15. If S is nonflat and T (S) = ±1 then Fst(wiwi+1) = Lst(wiwi+1)
for all i.

Proof. It is a direct consequence of Proposition 4.

Under some conditions, we may guarantee that some DS-factorizations do
not yield double squares. More precisely:

Lemma 16. Assume that S is nondegenerate. If there exists i ∈ Z8 such that
di = di+1, then T (S) /∈ {−1, 1}.
Proof. Let d = |wi| + |wi+2| = |wi+1| + |wi+3|. We first show that there exists
j ∈ Z8 such that |wj−1wj | ≥ d and |wjwj+1| ≥ d. Arguing by contradiction,
assume that the contrary holds. Then for all j ∈ Z8 either |wj−1wj | < d
or |wjwj+1| < d. By the pigeonhole principle, there must exist k ∈ Z8 with
|wk|+ |wk+1| < d and |wk+2|+ |wk+3| < d. Thus,

2d = |wk|+ |wk+1|+ |wk+2|+ |wk+3| < 2d,

which is absurd. Now, we know from Lemma 10 that the words x = wj−2wj−1wj ,
y = wj−1wjwj+1 and z = wjwj+1wj+2 all have period d. Moreover, x has a
suffix of length at least d that is a prefix of y, and y has a suffix of length
at least d that is a prefix of z, so that the period d propagates on the whole
word wj−2wj−1wjwj+1wj+2. First, since |wj−2wj−1wjwj+1| = 2d, we have
Fst(wj−2) = Fst(wj+2). On the other hand, wj+2wj+3 = ŵj−1ŵj−2 im-

plies Fst(wj+2) = Lst(wj−1). To conclude, we proceed again by contradic-
tion. Assume that T (S) ∈ {−1, 1}. Then Lemma 15 applies. In particular,
Lst(wj−1) = Fst(wj−2). Gathering these three equalities, we obtain

Fst(wj−2) = Fst(wj+2) = Lst(wj−1) = Fst(wj−2),

which is impossible. Hence, T (S) /∈ {−1, 1}.



It is worth mentioning that Lemma 16 is false if one of the wi is empty. For
instance, the double square S = (3, ε,0,10,1, ε,2,32) is such that d1 = d2 but
its turning number is 1.

Lemma 17. Let S be a DS-factorization. If S is flat, then T (S) = 0.

Proof. There exists i ∈ Z8 such that wiwi+1 = ε. Then

T (S) = T ( wi+2wi+3 ̂wi+2wi+3 ) = T ( ε ) = 0.

4 Reduction of double squares

The goal of this section is to show that any DS-factorization can be reduced to
a singular DS-factorization (Theorem 22) using two simple operators. First, we
show that those operators are well-defined (Proposition 18) and give conditions
under which they reduce the size of a DS-factorization (Lemma 19) and preserve
the turning number (Lemma 20). We observe that these conditions form a
partition so that one or the other operator can reduce any non singular DS-
factorization to a smaller one (Proposition 21). This leads to Algorithm 1
which reduces any DS-factorization of a double square tile to a singular DS-
factorization. It is worth mentioning both operators are invertible under mild
conditions described in Section 5 and preserve remarkable topological properties
studied in Section 6. Below, we describe them and illustrate their action on
double squares.

Let S = (wi)i∈Z8
be a nonsingular DS-factorization. Recall that Lemma 8

applies, so that the words ui, vi and the integers ni as discussed in the previous
section may be uniquely determined from S. Hence, if |w0| ≥ d0, we define

trim(S) = (w0(v0u0)−1, w1, w2, w3, w4(v4u4)−1, w5, w6, w7).

Moreover, for any nonsingular DS-factorization S, let

swap(S) = (ŵ4, (v1u1)n1v1, ŵ6, (v3u3)n3v3, ŵ0, (v5u5)n5v5, ŵ2, (v7u7)n7v7).

The basic operators trim, and swap are generalized to act on any wi by
using a shift operator. Let shift be the operator defined by

shift(S) = (w1, w2, w3, w4, w5, w6, w7, w0).

It is obvious that shift(S) is a DS-factorization. Therefore for each i ∈ Z8 and
every Θ ∈ {swap,trim}, we define the operator Θi(S) as

Θi(S) = shift−i ◦Θ ◦ shifti(S).

The reason for shifting back is simply to keep fixed the positions of other factors.
In particular, Θ0(S) = Θ(S). The effects of these operators are illustrated in
Figures 9 and 10. Their inverse are detailed in the next section. We first prove
that trimi and swapi yield DS-factorizations.
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Figure 9: S′ = trim1(S) is obtained from S by removing one period to w1 and w5.
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Figure 10: For S′ = swap0(S), w0 and w4 as well as w2 and w6 are interverted and
reversed. Moreover w1 = u1, w3 = u3, w5 = u5 and w7 = u7 are respectively replaced
by v1, v3, v5 and v7.

Proposition 18. Let S = (wi)i∈Z8
be a nonsingular DS-factorization. The

following properties hold.

(i) swapi(S) is a nonsingular DS-factorization.

(ii) If |wi| ≥ di, then trimi(S) is a DS-factorization.

Proof. Notice that S nonsingular implies that Lemma 8 applies for any index
in Z8. Without loss of generality, we prove it for i = 0.
(i) Let (w′i)i∈Z8

= swap0(S). It suffices to verify the equations in Definition 6.

First we show that w′0w
′
1 = ŵ′4w

′
5. We know from Equation (13) that ŵ4v1u1 =

v̂5û5ŵ4 and from Equation (18) that ŵ4v1 = v̂5w0. Hence

w′0w
′
1 = ŵ4(v1u1)n1v1 = (v̂5û5)n1ŵ4v1 = (v̂5û5)n1 v̂5w0 = ŵ′4w

′
5.

Now we show that w′1w
′
2 = ŵ′5w

′
6. We know from Equation (14) that u1v1ŵ6 =

ŵ6û5v̂5 and from Equation (17) that v1ŵ6 = w2v̂5. Hence,

w′1w
′
2 = v1(u1v1)n1ŵ6 = v1ŵ6(û5v̂5)n1 = w2v̂5(û5v̂5)n1 = ŵ′5w

′
6.



The proof for w′2w
′
3 = ŵ′6w

′
7 and w′3w

′
4 = ŵ′7w

′
0 are done as above. Then

swap0(S) satisfy the hypothesis to be a DS-factorization. Finally, we observe
that d1 is preserved by swap0 and

d′0 = (|w1| − |u1|) + |v1|+ (|w3| − |u3|) + |v3| ≥ 0 + |v1|+ 0 + |v3| > 0.

Thus swap0(S) is nonsingular.
(ii) Remark that n0 = n4 ≥ 1 since |w0| ≥ d0. Let w′0 = (u0v0)n0−1u0 and
w′4 = (u4v4)n4−1u4. We want to show that

trim(S) = (w′0, w1, w2, w3, w
′
4, w5, w6, w7)

is a DS-factorization. We know from Equation (13) that w7u0v0 = û4v̂4w7.
Then we can write

û4v̂4w7w
′
0 = w7u0v0w

′
0 = w7w0 = ŵ4ŵ3 = û4v̂4ŵ′4ŵ3

and w7w
′
0 = ŵ3w′4. The proof that w′0w1 = ŵ′4w5 is about the same, using

the equalities v0u0w1 = w1v̂4û4 (Equation (17)). Hence, trim(S) is a DS-
factorization.

As we know from Lemma 10, there exists a local periodicity in the neigh-
borhood of wi. The effect of the operator trim may be interpreted as removing
one instance of the repetead pattern, as illustrated in Figure 9. The opera-
tor swap is defined from the relations between the wi’s and the periods |ujvj |
(Lemma 10). An example is in Figure 10. Both trim and swap are invertible
(see Section 5 for the definition of the inverses).

It is not difficult to verify that trim produces smaller DS-factorizations
whenever it is applicable. However, the operator swap might increase the size
of the tile depending on the lengths of the words ui and vi. These facts are
detailed in the following lemma.

Lemma 19. Let S = (wi)i∈Z8
be a nonsingular DS-factorization such that

T (S) = ±1. The following properties hold.

(i) If |wi| ≥ di for some i, then |trimi(S)| < |S|.

(ii) If 0 < |wi| < di for all i, then there exists i such that |swapi(S)| < |S|.

(iii) If there exists i such that |wi| = 0 and 0 < |wj | < dj for all j /∈ {i, i+ 4},
then |swapi(S)| < |S|.

Proof. (i) Follows directly from the definition of trimi.
(ii) We have that wi = ui. Suppose by contradiction that swapi(S) does not
reduce S for all i. Then |ui+1|+ |ui+3| ≤ |vi+1|+ |vi+3| for all i. Using Equation
(10), we have |vi| = |wi+3|+ |wi+1| − |ui|, this implies |ui+1|+ |ui+3| ≤ |ui+2|+
|ui+4| for all i ∈ Z8. Then we deduce that |u0|+|u2| = |u1|+|u3|. But Lemma 16



implies T (S) 6= ±1 which is a contradiction.
(iii) Since |wi| = 0, we have di+1 = |wi+2|. Also, the hypothesis implies that

wi+1 = ui+1

wi+2 = ui+2

wi+3 = ui+3

and
|vi+1| = di+1 − |ui+1|
|vi+2| = di+2 − |ui+2|
|vi+3| = di+3 − |ui+3|

.

If |swapi(S)| ≥ |S|, then

|ui+1|+ |ui+3| ≤ |vi+1|+ |vi+3| = (di+1 − |ui+1|) + (di+3 − |ui+3|).

This implies that 2|ui+1|+ 2|ui+3| ≤ di+1 + di+3 = 2di+1 which leads to di+2 =
|wi+1|+ |wi+3| = |ui+1|+ |ui+3| ≤ di+1 = |wi+2|, a contradiction.

A remarkable property of the reduction operators is that they preserve the
absolute value of the turning number. For example, the reader may check that

swap1(3, ε,0,10,1, ε,2,32) = (2, ε,1,01,0, ε,3,23)

but T ( 30101232 ) = 1 and T ( 21010323 ) = −1.

Lemma 20. Let S = (wi)i∈Z8
be a DS-factorization.

(i) We have T (trimi(S)) = T (S) for all i.

(ii) If S is nondegenerate, then T (swapi(S)) = T (S) for all i.

(iii) If S is degenerate for only one i ∈ Z8, then T (swapi(S)) = −T (S).

Proof. (i) We prove it for trim0, the other cases being similar. Let S′ = (w′i) =
trim0(S) and first assume that S′ is flat. Then

S′ = ((u0v0)n0−1u0, w1, w2, w3, (u4v4)n4−1u4, w5, w6, w7).

S′ being flat implies T (S′) = 0, by Lemma 17. If S is flat, the result follows.
Otherwise, there exists j ∈ {−1, 0} such that w′jw

′
j+1 = ε, since trim modifies

only positions 0 and 4. Without loss of generality, assume that j = 0. Then
w1 = ε and |w0| = d0 = |w1|+|w3| = |w3|. Also, Lemma 13 applies at position 1
since any positive integer divides |w1| = 0. Hence, w1w2w3w4 = ε · pk = pk and
w5w6w7w0 = ε·qk = qk for some primitive words p, q and an integer k ≥ 2, where
pw2 = w2q̂ and |p| = |q| divides gcd(|w3|, |w0| + |w2|). But |w0| = |w3| implies
that |p| divides |w2|, so that p = q̂ and then T (S) = T ( pkp̂ k ) = T ( ε ) = 0.
This solves the case where S′ is flat since T (S) = T (S′) = 0.

Now, assume that S′ is not flat. Then Fst(wiwi+1) = Fst(w′iw
′
i+1) and

Lst(wiwi+1) = Lst(w′iw
′
i+1) for all i ∈ Z8, so that

T (trim0(S)) =
∑

i∈{0,2,4,6}
T (w′i−2w

′
i−1, w

′
iw
′
i+1)

=
∑

i∈{0,2,4,6}
T (wi−2wi−1, wiwi+1)

= T (S).



(ii) We do the proof only for swap0. If all the wi are nonempty, then

T (swap0(S)) =
∑

i∈{0,2,4,6}
T (w′i−1, w

′
i) =

∑

i∈{0,2,4,6}
T (vi−1, ŵi+4)

=
∑

i∈{0,2,4,6}
T (wi−2, wi−1) =

∑

i∈{1,3,5,7}
T (wi−1, wi) = T (S)

(iii) Without loss of generality, we suppose i = 0. Then w0 and w4 are both
empty. Therefore,

T (swap0(S)) =
∑

i∈{0,2,4,6}
T (w′i−2w

′
i−1, w

′
iw
′
i+1)

= T (w′6w
′
7, w

′
0w
′
1) + T (w′0w

′
1, w

′
2w
′
3) + T (w′2w

′
3, w

′
4w
′
5) + T (w′4w

′
5, w

′
6w
′
7)

= T (w′7, w
′
1) + T (w′1, w

′
2) + T (w′3, w

′
5) + T (w′5, w

′
6)

But, using Equations (12), (13), (14), the fact that w0 and w4 are empty and
Lemma 13, we get

T (w′7, w
′
1) = T (v7, v1) = T (w6, w2) = T (p̂, q̂) = −T (q, p) = −T (w7, w1),

T (w′1, w
′
2) = T (v1, ŵ6) = T (ŵ6, p) = T (ŵ6, w1) = T (ŵ6, ŵ5) = −T (w5, w6),

T (w′3, w
′
5) = T (v3, v5) = T (w2, w6) = T (q̂, p̂) = −T (p, q) = −T (w3, w5),

T (w′5, w
′
6) = T (v5, ŵ2) = T (ŵ2, q) = T (ŵ2, w5) = T (ŵ2, ŵ1) = −T (w1, w2).

Hence, we conclude that

T (swap0(S)) = −T (w7, w1)−T (w5, w6)−T (w3, w5)−T (w1, w2) = −T (S)

Before proving Theorem 22, let us define what we mean by reduction of a
DS-factorization. Let S and S′ be two DS-factorizations such that S′ = Θn ◦
· · · ◦Θ2 ◦Θ1(S) where Θj ∈ {trimi, swapi} are operators on DS-factorizations.
Let Sk = Θk ◦ Θk−1 ◦ · · · ◦ Θ1(S), so that S0 = S and Sn = S′. Then we say
that S reduces to S′ if |Sk| < |Sk−1| for all k ∈ [1..n].

Proposition 21. Let S be a DS-factorization such that T (S) = ±1. Then, one
of the conditions below holds:

(i) S is singular,

(ii) trimi reduces S for some i ∈ Z8 and T (trimi(S)) = ±1,

(iii) swapi reduces S for some i ∈ Z8 and T (swapi(S)) = ±1.

Proof. If there is i ∈ {0, 1, 2, 3} such that |wi| ≥ di, then S reduces to trimi(S)
by Lemma 19 (i). Moreover, by Lemma 20 (i), T (trimi(S)) = T (S) = ±1.

Also, if 0 < |wi| < di for all i, then S reduces to swapi(S) for some i by
Lemma 19 (ii). Moreover, by Lemma 20 (ii), T (swapi(S)) = T (S) = ±1.
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Figure 11: Reduction of a double square tile to a singular DS-factorization which in
this case is the unit square.

Otherwise, assume that there exists i such that |wi| = 0 and 0 < |wj | < dj
for all j /∈ {i, i+ 4}. Then S reduces to swapi(S) by Lemma 19 (iii). Moreover,
by Lemma 20 (iii), T (swapi(S)) = −T (S) = ±1.

Next, assume that there exists i such that |wi| = 0 and |wi+2| = 0. Then S



is singular.
It remains to consider the case where there exists i such that |wi| = 0 and

|wi+1| = 0 or |wi+3| = 0, then S is flat so that T (S) = 0 (Lemma 17) which is
a contradiction.

Algorithm 1 Reduction of a double square tile

1: function Reduce(S)
2: Input: a DS-factorization S = (wi)i∈Z8

s.t. T (S) = ±1
3: Output: an ordered list L of operators.
4: L← (empty list)
5: while S is not singular do
6: if there is i such that |wi| ≥ di then
7: S ← trimi(S), L← L+ trimi

8: else if 0 < |wi| < di for all i then
9: Let i ∈ {0, 1} such that |swapi(S)| < |S|

10: S ← swapi(S), L← L+ swapi

11: else if there is i s.t. |wi| = 0 and 0 < |wj | < dj for all j /∈ {i, i+ 4}
then

12: S ← swapi(S), L← L+ swapi

13: else . S is singular or flat
14: Error: impossible case.
15: end if
16: end while
17: return L . S corresponds to a singular DS-factorization
18: end function

Using the previous results, we are now ready to show that every double
square is reducible.

Theorem 22. Every DS-factorization of double square reduces to a singular
DS-factorization.

Proof. Let S be the DS-factorization of a double square. From Proposition 2,
the turning number of S is ±1. Hence, from Proposition 21, if S is nonsingular,
either S may be reduced by trim or swap to some DS-factorization S′, which
both preserve the turning number ±1. If S′ is not singular, then this procedure
can be done recursively. Since the length of the DS-factorization gets strictly
smaller at each reduction (Lemma 19), Fermat’s infinite descent principle ap-
plies. It follows that the number of iterations is finite and S reduces to a singular
DS-factorization.

Algorithm 1 contains the pseudocode for the reduction and Figure 11 illus-
trates the execution of the reduction on a double square tile. The correctness
of Algorithm 1 follows directly from Proposition 21 and Theorem 22.



Remark that in the reduction algorithm, the last operator must be trim since
swap(S) is never singular when S is not. This observation is useful for prov-
ing Theorem 30 in Section 6 giving conditions under which a DS-factorization
reduces to the unit square.

5 Generation of double square tiles

The previous section ended with Theorem 22 stating that every DS-factorization
of a double square reduces to a singular DS-factorization. Therefore, it raises
the question whether this leads to an algorithm that generates all double squares
by inverting the reduction operators. It appears that swap is its own inverse
under some conditions and that trim can be inverted easily. In this section,
we introduce and study more deeply the inverses of the reduction operators.
Moreover, we give some relations between these operators and we provide an
algorithm that generates all double squares up to a given perimeter length.

extend0

extend1

extend2

extend3

swap0
swap1

extend0

extend1

swap0swap1

Figure 12: Subtree of the space of DS-factorizations generated when starting from the
X pentomino.

Let S = (wi)i∈Z8
be a DS-factorization such that d0 6= 0. We define

extend(S) = (w0(v0u0), w1, w2, w3, w4(v4u4), w5, w6, w7).

For any i ∈ Z8 such that di 6= 0, the operator extendi is naturally defined



by
extendi = shift−i ◦ extend ◦ shifti.

Proposition 23. Let S = (wi)i∈Z8
be a DS-factorization such that di 6= 0.

Then extendi(S) is a DS-factorization.

Proof. Without loss of generality, we only consider the case i = 0. By Lemma
8, we know that w0 = (u0v0)n0 and w4 = (u4v4)n4 for unique words u0, v0,
u4, v4 and unique nonnegative integers n0 and n4. Let w′0 = (u0v0)n0+1u0 and
w′4 = (u4v4)n4+1u4. We show that

extend(S) = (w′0, w1, w2, w3, w
′
4, w5, w6, w7)

is a DS-factorization. First we prove that ŵ3w′4 = w7w
′
0. Indeed, from Equa-

tion (13), we have w7u0v0 = û4v̂4w7 and we can write ŵ3w′4 as

û4v̂4ŵ4 · ŵ3 = û4v̂4w7w0 = w7 · u0v0w0 = w7w
′
0

so that ŵ3w′4 = w7w
′
0. The proof that ŵ′4w5 = w′0w1 is about the same, using

the equalities v0u0w1 = w1v̂4û4 (Equation (17)) and w0w1 = ŵ5ŵ4.

Under mild conditions, all operators are invertible, as shown by the next
proposition.

Proposition 24. Let S = (wi)i∈Z8
be a DS-factorization.

(i) shift8(S) = S;

(ii) If di 6= 0, then trimi ◦ extendi(S) = S;

(iii) If 0 < di ≤ |wi|, then extendi ◦ trimi(S) = S;

(iv) If S is nonsingular and ui+1, ui+3, ui+5 and ui+7 are nonempty, then
swap2

i (S) = S.

Proof. (i) Trivial.
(ii) This follows from the fact that all factors but wi and wi+4 are not modified by
trimi nor extendi and from the equalities wi = wi(viui)(viui)

−1 and wi+4 =
wi+4(vi+4ui+4)(vi+4ui+4)−1.
(iii) Same idea as (ii) but since |wi| > di, the equalities wi = wi(viui)

−1(viui)
wi+4 = wi+4(vi+4ui+4)−1(vi+4ui+4) hold as well.
(iv) Without loss of generality, assume that i = 0. Notice that by definition,
vj 6= ε, for all j ∈ Z8 but it is possible to have uj = ε. Clearly, swap is
involutory for the factors at even positions j ∈ Z8, since the map wj 7→ ŵj+4 is
involutory. For odd positions, if uj 6= ε, then the map (ujvj)

njuj 7→ (vjuj)
njvj

is clearly involutory while, if uj = ε, then v
nj

j = (ujvj)
njuj 7→ (vjuj)

njvj =

v
nj+1
j 7→ (ujvj)

nj+1 6= v
nj

j . Hence, the assumptions uj 6= ε for odd j ∈ Z8 is
necessary.



Algorithm 2 Generation of double squares from a DS-factorization

1: function Generate(S0, n)
2: Input: S0 any DS-factorization s.t. T (S0) = ±1, n a positive integer
3: Output: all double squares that reduce to S0 of perimeter at most n
4: T ← ∅
5: Q← {S0}
6: while Q 6= ∅ do
7: S ← Pop(Q)
8: T ← T ∪ {S}
9: U ← {extendi(S) : i = 0, 1, 2, 3} ∪ {swapi(S) : i = 0, 1}

10: Q← Q ∪ {C ∈ U \ T : |S| < |C| ≤ n}
11: end while
12: return {S ∈ T : S describes a polyomino }
13: end function

extend0
extend0

extend2

extend2 swap1

swap1

extend0

Figure 13: Two distinct ways of generating the same double square tile. The diagram
commutes in virtue of Proposition 25(iii) and (iv).

In order to improve the efficiency of Algorithm 2, it is worth mentioning that
the operators extend and swap satisfy commuting properties (see Figure 13).

Proposition 25. Let Θ ∈ {extend, swap} and i ∈ Z8.

(i) Θi = Θi+4;

(ii) If S is nonsingular, then swapi(S) = swapi+2(S);

(iii) If di, di+2 6= 0, then extendi+2◦extendi(S) = extendi◦extendi+2(S);

(iv) If S is nonsingular, then extendi+1 ◦ swapi = swapi ◦ extendi+1;

Proof. We only show (iv), the other proofs being similar. Without loss of gen-



erality, we may assume i = 0. On one hand, we have

(swap0 ◦ extend1)(S)

= swap0(extend1(S))

= swap0(w0, w1(v1u1), w2, w3, w4, w5(v5u5), w6, w7)

= (ŵ4, (v1u1)n1+1v1, ŵ6, (v3u3)n3v3, ŵ0, (v5u5)n5+1v5, ŵ2, (v7u7)n7v7).

On the other hand, we obtain

(extend1 ◦ swap0)(S)

= extend1(swap0(S))

= extend1(ŵ4, (v1u1)n1v1, ŵ6, (v3u3)n3v3, ŵ0, (v5u5)n5v5, ŵ2, (v7u7)n7v7)

= (ŵ4, (v1u1)n1+1v1, ŵ6, (v3u3)n3v3, ŵ0, (v5u5)n5+1v5, ŵ2, (v7u7)n7v7).

Based on the preceding results, Algorithm 2 allows to generate all double
squares of perimeter at most n reducing to a given double square. As mentioned
above, it can be enhanced in virtue of Proposition 25. More precisely, it is
possible to avoid exploring all paths involving commuting operators by choosing
precedence on the operators. For instance, we could avoid using the operator
extend1 if the last applied operator is either extend3 or swap0, i.e. extend1

would precede extend3 and swap0. Figure 12 illustrates a partial trace of
Algorithm 2 when starting with the X pentomino.

It is not clear whether Algorithm 2 is efficient for generation purposes, since
it yields infinitely many nonsimple DS-factorization. It is worth mentioning
that Line 13 can be achieved in linear time by using an algorithm of Brlek,
Koskas and Provençal [8]. Moreover, a discussion in the next section shows that
all prime double squares may be generated by setting S0 to the unit square.
Finally, the reader may notice that the enumeration of double squares according
to increasing perimeter length can be accomplished by making Q a priority heap.

6 Prime double squares and palindromes

This section is devoted to the proof that double square tiles have a palindromic
structure. For this purpose, it is convenient to define homologous morphisms:
A morphism ϕ is called homologous if

ϕ(ŵ) = ϕ̂(w), for any word w ∈ F∗. (21)

Clearly, if ABÂB̂ is the boundary of a square tile Q, then the morphism

ϕA,B : 0 7→ A,1 7→ B,2 7→ Â,3 7→ B̂

is homologous.
A polyomino P is called prime if for any boundary word w of P , any bound-

ary word u and any homologous morphism ϕA,B , the equality w = ϕA,B(u)



Q =

(a)

(b)

ϕ{A,B} : 0 7→ 00
1 7→ 101
2 7→ 22
3 7→ 323

P =

(c) (d)

X =

(e) (f)

Figure 14: (a) A square tile Q with boundary word ABÂB̂ = 00 · 101 · 22 · 323.
(b) The homologous morphism ϕA,B . (c) A polyomino P with boundary word u =
00121001222333. (d) The composed tile having boundary word ϕA,B(u). (e) The
prime double square X pentomino having boundary word v = 010121232303. (f)
The composed tile with boundary word ϕA,B(v), which is also a double square tile.

implies that either ABÂB̂ or u is a boundary word of the unit square. Oth-
erwise, P is called composed (see Figure 14). More intuitively, a polyomino is
composed if it may be square-tiled by a smaller nontrivial polyomino.

Note that if D is composed, Theorem 1 does not apply as illustrated by
Figure 15 which considers ϕA′,B′ : 0 7→ 0100,1 7→ 11,2 7→ 2232,3 7→ 33.

Q′ =

(a)

D =

(b) (c)

Figure 15: (a) A square tile Q′ with boundary word ABÂB̂ = 0100 · 11 · 2232 · 33.
(b) The prime double square pentomino X with boundary word v = 010121232303.
(c) The composed tile having boundary word ϕA,B(v), which is not invariant under
ρ2, where ϕA,B is defined by A = 0100 and B = 11.

In the sequel, we suppose that ϕ is homologous. Moreover, if S = (wi)i∈Z8

is a DS-factorization then we define

ϕ(S) = (ϕ(w0), ϕ(w1), ϕ(w2), ϕ(w3), ϕ(w4), ϕ(w5), ϕ(w6), ϕ(w7)).

The first statement we prove is that homologous morphisms preserve DS-
factorizations.

Proposition 26. Let S = (wi)i∈Z8
be a DS-factorization and ϕ be an homolo-

gous morphism. Then, ϕ(S) is a DS-factorization.



Proof. We verify the first condition, the other three being similar:

̂ϕ(w0)ϕ(w1) = ̂ϕ(w0w1) = ϕ(ŵ0w1) = ϕ(w4w5) = ϕ(w4)ϕ(w5).

Let w′i = ϕ(wi) and d′i = |w′i+1| + |w′i+3|. From Lemma 8, if d′i 6= 0, then
there exist u′i, v

′
i and n′i such that

ŵ′i−3w
′
i−1 = u′iv

′
i

w′i = (u′iv
′
i)

n′
iu′i

w′i+1ŵ
′
i+3 = v′iu

′
i,

where 0 ≤ |u′i| < d′i, for all i. The next technical lemma show that homologous
morphisms also preserve the words ui and vi as well as the numbers ni.

Lemma 27. For any i ∈ Z8 such that di 6= 0, ϕ(ui) = u′i, ϕ(vi) = v′i and
n′i = ni.

Proof. Without loss of generality, we only show the case i = 0. First we observe
that

u′0v
′
0 = ŵ′5w

′
7 = ϕ̂(w5)ϕ(w7) = ϕ(ŵ5)ϕ(w7) = ϕ(ŵ5w7) = ϕ(u0v0).

We want to show that |u′0| = |ϕ(u0)|. We also have

(u′0v
′
0)n

′
0u′0 = w′0 = ϕ(w0) = ϕ((u0v0)n0u0) = ϕ(u0v0)n0ϕ(u0) = (u′0v

′
0)n0ϕ(u0).

Then we have
d′0 · n′0 + |u′0| = d′0 · n0 + |ϕ(u0)|

with 0 ≤ |u′0| < d′0 and 0 ≤ |ϕ(u0)| < |ϕ(u0v0)| = |u′0v′0| = d′0. The unicity
of the quotient and remainder of the division of |w′0| by d′0 yields n′0 = n0 and
|u′0| = |ϕ(u0)|. We conclude that ϕ(u0) = u′0 and ϕ(v0) = v′0.

Another useful fact is that homologous morphisms and the generation oper-
ators commute (see Figure 16).

Proposition 28. Let i ∈ Z8. Then

(i) ϕ and extendi commute;

(ii) ϕ and swapi commute.

Proof. We prove the result for i = 0, the other cases being symmetric.
(i) Let S = (wi)i∈Z8 . Then by Lemma 27

ϕ(extend0(S)) = ϕ(w0v0u0, w1, w2, w3, w4v4u4, w5, w6, w7)

= (w′0ϕ(v0u0), w′1, w
′
2, w

′
3, w

′
4ϕ(v4u4), w′5, w

′
6, w

′
7)

= (w′0v
′
0u
′
0, w

′
1, w

′
2, w

′
3, w

′
4v
′
4u
′
4, w

′
5, w

′
6, w

′
7)

= extend0(w′0, w
′
1, w

′
2, w

′
3, w

′
4, w

′
5, w

′
6, w

′
7)

= extend0(ϕ(S)).
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r
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2

ϕ ϕ ϕ ϕ

Figure 16: Generation operators and homologous morphisms commute.

(ii) Let S = (wi)i∈Z8
. Then by Lemma 27

ϕ(swap0(S)) = ϕ(ŵ4, (v1u1)n1v1, · · · )
= (ϕ(ŵ4), ϕ((v1u1)n1v1), · · · )
= (ϕ̂(w4), (ϕ(v1)ϕ(u1))n1ϕ(v1), · · · )
= (ŵ′4, (v

′
1u
′
1)n

′
1v′1, · · · )

= swap0(w′0, w
′
1, w

′
2, w

′
3, w

′
4, w

′
5, w

′
6, w

′
7)

= swap0(ϕ(S)).

As a consequence, we conclude that composed tiles are preserved by gener-
ation operators while prime tiles are preserved by reduction operators.

Proposition 29. Let i ∈ Z8. Then

(i) extendi and swapi preserve composed double square tiles.

(ii) trimi and swapi preserve prime double square tiles.

Proof. (i) Let S be DS-factorization. If S is composed, there exists a homologous
morphism ϕ and another DS-factorization T such that S = ϕ(T ) where T is not
the unit square. From Proposition 28, we have

swapi(S) = swapi(ϕ(T )) = ϕ(swapi(T ))

and
extendi(S) = extendi(ϕ(T )) = ϕ(extendi(T ))

so that swapi(S) and extendi(S) are composed double square tile.
(ii) This statement is the contrapositive of (i).



trim

extend

Figure 17: The degenerate double square to the left is a composed tile whereas the
singular double square tile to the right is prime. This illustrates that trimi does not
preserve composed tiles and extendi does not preserve prime tiles.

Note that trimi do not preserve composed tiles and extendi do not preserve
prime tiles as illustrated in Figure 17.

Theorem 30. Let D be a double square tile. If D is prime, then D reduces to
the unit square.

Proof. Let D be a double square tile and S be its nonsingular DS-factorization.
From Theorem 22, S reduces to a singular DS-factorization T of the form:

T = (ε, w1, ε, w3, ε, ŵ1, ε, ŵ3)

where each of the intermediate DS-factorization is prime since D is prime
(Proposition 29). Also, the last operator used in the reduction algorithm must
be trimi where i ∈ {0, 2, 4, 6}, since swapi(S) cannot be singular by Proposi-
tion 18. Therefore, the penultimate DS-factorization in the reduction algorithm
is of the form

extend0(T ) = (w1ŵ3, w1, ε, w3, ŵ1w3, ŵ1, ε, ŵ3).

But, this last double square is prime only if w1 and w3 are letters, so that T is
the unit square.

We conclude this section by proving Theorem 1. Before doing so, we need
two last technical lemmas.

Lemma 31. The following conditions are equivalent:

(i) wiwi+1 is a palindrome for all i;

(ii) wi = wi+4 for all i;

(iii) ui = ui+4 and vi = vi+4 for all i.

Proof. We first show that (i) and (ii) are equivalent. Since wiwi+1 = ŵi+5ŵi+4,
we have that wiwi+1 is a palindrome if and only if w̃i+1w̃i = wiwi+1 = ŵi+5ŵi+4.
But |wi| = |wi+4| and the result follows.



Next, we prove that (ii) and (iii) are equivalent. Since |ui| = |ui+4| and
|vi| = |vi+4| for all i ∈ Z8, we deduce that wi = wi+4 for all i ∈ Z8 if and only if

uivi = ŵi−3wi−1 = w̃i+1wi+3 = ŵi+1wi+3 = ui+4vi+4.

The next lemma states that palindromicity is preserved by the reduction
and generation operators.

Lemma 32. Let S be a DS-factorization such that wiwi+1 is a palindrome for all
i ∈ Z8 and S′ = Θ(S) be DS-factorization, where Θ ∈ {shift,extend,trim, swap}.
Then w′iw

′
i+1 is a palindrome as well for all i ∈ Z8.

Proof. Since the operator shift preserved exactly the factors wiwi+1, the result
is trivial in this case. Consider now extend0. We have to show that w′0w

′
1 = w0·

w1v1u1 and w′1w
′
2 = w1u1v1 ·w2 are palindromes. From Equations (12), (15) and

(18), we can write w0w1v1u1 = û5v̂5w0w1. Since û5v̂5 = ũ1ṽ1 (Lemma 31 (iii)),
this proves that w0w1v1u1 is a palindrome. Similarly, we prove that w1v1u1w2 =
w1w2v̂5û5 = u1v1w1w2 is a palindrome. To show that trim0 preserve the
palindromes, the steps to do are the same as for extend0, removing a period
instead of adding one. Consider now the operator swap0. From Lemma 31 and
Equations (13) and (18), we obtain

w′0 · w′1 = w0v0u0w1 = w0w1v̂4û4 = w̃1w̃1v̂4û4 = w̃1w̃1ṽ0ũ0

= ˜u0v0w0w1 = w̃′0w
′
1

The argument is the same to prove that the other factors w′iw
′
i+1 also are palin-

dromes.

As a consequence, we solve the conjecture of Provençal and Vuillon [17]:

Proof of Theorem 1. If D is a prime double square tile, it reduces to the unit
square by Theorem 30 which is made of palindromes but generation operators
preserve palindromes wiwi+1 by Lemma 32.

7 Concluding remarks and open problems

Although we have described an algorithm that exhaustively generate double
squares, there is room for efficiency improvements. First, we have not yet been
able to find a double square tile having turning number ±1 such that Line 11
of Algorithm 1 is used. Hence, we are tempted to conjecture that it could
be removed. Also, it would be interesting to study and perhaps improve the
complexity of Algorithms 1 and 2.

Moreover, we observed that, for instance, all DS-factorizations starting from
the DS-factorization (extend0 ◦ extend1 ◦ extend1)(ε,2, ε,3, ε,0, ε,1) are
not simple (see Figure 18). It would be interesting to verify if it is indeed the
case, i.e. if the paths generated by Algorithm 2 starting from particular DS-
factorizations are all nonsimple. This would significantly reduce the size of the



explored space. Lemma 13 (v) is probably a good starting point for further
investigations in that direction. In the same spirit, it seems that every double
square tile might be generated uniquely up to the commutative properties of
the trimi and swapi operators stated in Proposition 25.

extend1 extend1

extend0

extend0

extend1
extend2

extend3

swap0

Figure 18: Subtree of DS-factorizations yielding only nonsimple paths.

Empirical observations suggests that when applying Algorithm 1 to a dou-
ble square, it reduces to a composed X pentomino in a way such that each
intermediate DS-factorization describes a simple closed path.

Conjecture 33. Let S be the nonsingular DS-factorization of a double square
tile and X be the X pentomino. There exist an homologous morphism ϕ and a
reduction from S to ϕ(X), such that each intermediate DS-factorization in the
reduction describes a polyomino.

Theorem 30 states that prime double squares reduce to the unit square. Can
one prove the converse? This would lead to a primality test for double square
tiles. We believe the converse is true and propose the following conjecture.

Conjecture 34. Let D be a double square tile. If D reduces to the unit square,
then D is prime.

Also, it seems that the boundary of a prime double square is made only of
left and right turns. More formally, we make the following conjecture.

Conjecture 35. Let w ∈ F∗ be the boundary word of a prime double square
tile. Then for all letter α ∈ F , αα is not a factor of w . Equivalently,
∆( w ) ∈ {1,3}∗.

A natural question comes when working with homologous morphisms : Does
homologous morphisms preserve primitive words? It turns out to be false for the



morphism ϕA,B with A = 0, B = 101. Indeed, 01 is primitive but ϕA,B(01) =

0101 is not. But we believe it is true if ABÂB̂ is the boundary of a polyomino.
This question can be written in terms of codes (see chapter on circular codes
in [2]). A submonoid M of the free monoid A∗ is very pure if for all u, v ∈ A∗,
uv, vu ∈ M implies that u, v ∈ M . Indeed, very pure code preserve primitive
words.

Conjecture 36. Let A,B ∈ F∗ be two primitive words. If w = ABÂB̂ is the
boundary word of a square tile, i.e. none of the proper factors of conjugates of
w is closed then {A,B, Â, B̂}∗ is a very pure submonoid.

For example, 010121232303 is the boundary of a square tile containing no
closed proper factors and M = {010,121,232,303}∗ is very pure. However,
the reciprocal is not true as observed by Hugo Tremblay [19] who provided a
counter example: the submonoid M = {0010,1101,2322,3233}∗ is very pure
but 0010 ·1101 ·2322 ·3233 is a closed path containing the closed proper factor
0123.
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