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FIBONACCI SNOWFLAKES
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Dedicated to Paulo Ribenboim.

RÉSUMÉ. Nous étudions les mots sur l’alphabet à 2 lettres T = {L, R} qui codent
des chemins dans le plan discret Z × iZ. Une récurrence permet de construire des
chemins simples associés à une classe de polyominos que nous appelons polyominos
de Fibonacci : ils possèdent une structure de type flocon de neige dont l’aire est donnée
par la suite

1, 5, 29, 169, 985, 5741, 33461, 195025, 1136689, 6625109, 38613965, . . .

tandis que leur périmètre s’exprime en terme des nombres de Fibonacci F (3n+1). De
plus chacun de ces polyominos pave le plan par translation.

ABSTRACT. We study words on the 2-letter alphabet T = {L, R} coding simple
paths in the discrete plane Z× iZ. A recurrence formula allows to build paths that are
simple and linked with a class of polyominoes which we call Fibonacci polyominoes:
they have a snowflake like structure whose area is given by the sequence

1, 5, 29, 169, 985, 5741, 33461, 195025, 1136689, 6625109, 38613965, . . .

while their perimeter is expressed in terms of the Fibonacci numbers F (3n + 1). In
addition, each polyomino in this class tiles the plane by translation.

1. Introduction

A path in the square lattice, identified with Z× iZ, is a polygonal path made of the
elementary unit translations

i = (0, 1), i2 = (−1, 0), i3 = (0,−1), i4 = (1, 0).

These paths are conveniently encoded by words on the alphabet E = {i,−i, 1,−1},
and we say that w is closed if it satisfies |w|i = |w|−i and |w|1 = |w|−1, i.e., if the two
extremities of the polygonal line coincide. For instance, the words in E corresponding
to the paths in Figure 1(a) (nonclosed) and (d) (closed) are

(a) p1 = 1 1 i i i 1 1 i −1 −1 −1 −i −i −i 1 1 −i −i,
(d) p4 = i i 1 1 1 −i −i 1 i i i i −1 −1 −i −i −i −i −i −1 i −1 .

A simple path (as in (b) or (c)) is a word w such that none of its proper factors is a
closed path. A loop (like (c)) is a nonempty simple closed path, also called boundary
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FIGURE 1. Some paths in the discrete plane Z× iZ.

word. A loop splits the plane in two regions, where the exterior one is unbounded while
the interior one is bounded and called polyomino, as depicted in Figure 1(c).

Another way to describe a path on the square grid is to give the sequence of di-
rections at intersections: a path is fully determined by the starting step α ∈ E and the
sequence of direction indications, that is left (L), right (R), forward (F) or backward (B)
moves. In this note we consider a subclass defined on the alphabet T = {L, R}, and in
particular the class of paths obtained from words defined by the recurrence

qn =

{
qn−1qn−2 if n ≡ 2 mod 3,

qn−1qn−2 if n ≡ 0, 1 mod 3.

where q0 = ε (the empty word), q1 = R, and the · operation consists in exchanging
the letters R and L. It turns out that the subsequence q3n+1 enables us to construct an
infinite sequence TF (n) of polyominoes, which we call Fibonacci polyominoes, with
the following properties:

(i) The perimeter, i.e., the length of its contour line, of the polyomino of order n is
equal to 4F (3n+ 1), where F (n) is the Fibonacci sequence, with F (1) = F (2) = 1.

(ii) The area is given by the sequence (A001653 in [12])

1, 5, 29, 169, 985, 5741, 33461, 195025, 1136689, 6625109, 38613965, . . .

defined by the recurrence

A(0) = 1, A(1) = 5; A(n) = 6A(n− 1)−A(n− 2), for n > 1,

this sequence being the subsequence of odd index of the Pell numbers defined by

P (0) = 0, P (1) = 1; P (n) = 2P (n− 1) + P (n− 2), for n > 1.

Geometry on a square grid therefore reveals yet another connection between Fi-
bonacci and Pell numbers. Pell numbers are of course closely related to the continued
fraction expansion of

√
2 and to the so-called Pell equation X2 − 2Y 2 = ±1, for

X,Y ∈ N. They are described on page 55 in the book “The new book of prime num-
ber records” by Paulo Ribenboim [11], in connection with primality testing. These
polyominoes are remarkable in that they tile the plane as we shall see later on.

2. Preliminaries

We restrict our study to words on the alphabet T = {L, R} and start by defining
some useful functions We have already met the function · which exchanges the letters
R and L. The reversal w̃ of w = w1w2 · · ·wn is the word w̃ = wnwn−1 · · ·w1, and
words satisfying w = w̃ are called palindromes. The words w of E∗ or T ∗ satisfying
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FIGURE 2. A tesselation with a Fibonacci polyomino.

ŵ = w̃ = w are called antipalindromes. The winding number ∆ : T ∗ → Z is defined
by ∆(w) = |w|L − |w|R (see [4]). The empty word ε satisfies ∆(ε) = 0, and we also
have the following trivial properties:

(1)



∆(uv) = ∆(u) + ∆(v),

∆(w) = ∆(w̃),

∆(w) = −∆(w) = ∆(ŵ),

∆(wL) = ∆(w) + 1,

∆(wR) = ∆(w)− 1.

Observe that if w is an antipalindrome, then ∆(w) = 0.

Let us consider the (right) action E × T ∗ → E by setting for each α ∈ E :

(i) αL = i ·α, αR = −i ·α,

(ii) αε = α,

where · is the usual complex product, often omitted when operands are complex num-
bers. Clearly, we have α(uv) = (αu)v by associativity.

Theorem 2.1. We have αw = i∆(w)α.

Proof. By induction. Assume the claim true for w. Then

αwL = (αw)L = i∆(w)αL = i∆(w)+1α = i∆(wL)α,

and the result is true for wL. Similarly for wR.

The next property is obvious and describes the action of w on α. It follows from
the fact that αw and αw are symmetric with respect to the axis defined by α.

Corollary 2.2. Let w ∈ T ∗ and α ∈ E . Then,

αw =

{
αw if ∆(w) ≡ 0 mod 2,
−αw otherwise.

To each pair (α, w) ∈ E × T ∗, corresponds a polygonal path Γ whose first side
is α and whose subsequent sides are obtained by reading the instructions L or R of w.
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The sequence z0 = 0, z1 = α, . . . , z|w|+1 of vertices of Γ is computed by

z`+1 = α
∑̀
k=1

i∆(w[1,k]), for 0 ≤ ` ≤ |w|,

where w[1, k] = w1w2 · · ·wk, denotes the prefix of length k of w (by convention
w[1, 0] = ε). For sake of simplicity, we denote −→αw the vector −−−−−−→z0, z|w|+1. Notice that
∆ trivially extends to paths. Each closed path is identified with the word w, dropping
the starting step α. By abuse of terminology we often identify w with a path, and if we
want to distinguish, we say that w represents some path y. The composition ·̂ = · ◦ ·̃
is interpreted as follows: if w ∈ T ∗ is a path, then ŵ is the reverse path which runs
backwards. We recall from [4] a property of closed paths.

Lemma 2.3. If a path w ∈ T ∗ is closed then ∆(w) ≡ 0 mod 3.

Given a nonempty word w = w1w2 · · ·wn ∈ T ∗, let w_ denote the word obtained
by removing the last letter, that is, w_ = w1w2 · · ·wn−1.

Theorem 2.4. Let w ∈ T ∗ and α ∈ E . The following properties hold:

(i) If αw = ±iα then w3w_ is a closed path.

(ii) If αw = −α then ww_ is a closed path.

(iii) If αw = α then either w_ is a closed path, so that wn is bounded as n→∞,
or w_ is open and |−−→αwn| = cn.

Proof. (i) In this case, the initial step α is rotated by an angle of ±π/2, illustrated
in Figure 3 with an angle of +π/2 counterclockwise. Taking four copies of w corre-
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FIGURE 3. Case (i) with a +π/2 angle.

sponds to a closed polygonal path where the first side α corresponds to the last side α.
This is illustrated with an angle +π/2 in the figure on the right. So that the computation
of αw3w_ amounts to compute z + iz + i2z + i3z = 0, where z = −−→αw_.

Property (ii) is similar with a ±π rotation. As for (iii), if w_ is not closed, then

w
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w
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FIGURE 4. Case (iii).

obviously, αw = α represents a nontrivial translation of α, and therefore the two
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endpoints of the polygonal path corresponding to αwn are cn apart for some constant
c > 0, as shown in Figure 4. Finally, if w_ is closed, then clearly the polygonal path
corresponding to wn is bounded.

The above proof in case (i) uses the rotation among the isometric transformations.
As we shall see later these transformations are useful for describing our Fibonacci poly-
ominoes. In particular we have the following properties.

Lemma 2.5. Let w ∈ T ∗,α ∈ E and y ∈ αE∗ such that y = (α, w). Then the
following statements are equivalent:

(i) ŷ = (i2, w).

(ii) y is a palindrome.

(iii) w is an antipalindrome.

Lemma 2.6. Let w ∈ T ∗ and Γ its corresponding polygonal line. Let α ∈ E and
M be the midpoint of the vector z = −→αw.

(i) w is a palindrome if and only if the perpendicular to −→αw at M is a symmetry
axis for Γ.

(ii) w is a antipalindrome if and only if Γ is symmetric with respect to M .

Observe that if w is an antipalindrome then the algebraic area between z and Γ is null.

3. Fibonacci snowflakes

Recall that the sequence (qn)n∈N in T ∗ is defined by q0 = ε, q1 = R and

qn =

{
qn−1qn−2 if n ≡ 2 mod 3,

qn−1qn−2 if n ≡ 0, 1 mod 3,

whenever n ≥ 2. The first terms of (qn)n∈N are

q0 = ε q3 = RL q6 = RLLRLLRR
q1 = R q4 = RLL q7 = RLLRLLRRLRRLR
q2 = R q5 = RLLRL q8 = RLLRLLRRLRRLRRLLRLLRR .

Note that |qn| = Fn is the n-th Fibonacci number. Moreover, the paths qn present
strong symmetry properties, as shown by the next lemma.

Proposition 3.1. Let n ∈ N. There exist an antipalindrome t, two palindromes p, r
and a letter a ∈ {L, R} such that q3n+1 = ta, q3n+2 = pa and q3n+3 = ra.

Proof. By induction on n. For n = 0, we have indeed q1 = ε · R, q2 = ε · R and
q3 = R · L. Now, assume that q3n+1 = ta, q3n+2 = pa and q3n+3 = ra for some
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antipalindrome t, some palindromes p, r and some letter a ∈ {L, R}. Then

q3n+4 = q3n+3q3n+2 = q3n+2q3n+1 q3n+2 = patap · a(2)
q3n+5 = q3n+4q3n+3 = q3n+3q3n+2q3n+3 = rapar · a
q3n+6 = q3n+5q3n+4 = q3n+4q3n+3q3n+4 = pataparapatap · a.

Since patap is an antipalindrome and rapar, pataqarapatap are palindromes, the
result follows.

The proof above also shows that the winding number can take only three values.

Corollary 3.2. Let n ∈ N. Then we have

(i) ∆(q3n) = 0,

(ii) ∆(q3n+1) = ∆(q3n+2) = (−1)n+1.

Proof. (i) By definition we have q3n+3 = q3n+1q3n · q3n+1. Equations (1) imply
that ∆(q3n+3) = ∆(q3n), and the claim follows by induction.

(ii) By definition we have q3n+2 = q3n+1.q3n so that ∆(q3n+2) = ∆(q3n+1) by
what precedes. Since q3n+1 = ta for some antipalindrome t, it follows from Equations
(1) that

∆(q3n+1) = ∆(ta) = ∆(a) = ±1.

Finally, Equation (2) shows that ∆(q3n+1) = −∆(q3n+4), and ∆(q4) = −1 per-
mits to conclude the proof.

We first show that the coordinates of the vector −−→αq_
n are expressed in terms of Pell

numbers.

Lemma 3.3. Let α ∈ E . Then for all n ∈ N, we have
−−−→αq_

3n = α · (P (n), (−1)nP (n))

−−−−→αq_
3n+1 = α · (P (n+ 1), (−1)nP (n))

−−−−→αq_
3n+2 = α · (P (n) + P (n+ 1), 0)

where · is the usual complex product.

Proof. By induction on n. For n = 0, we have −−→αq0 = (0, 0), −−→αq1 = α · (1, 0)
and −−→αq2 = α · (1, 0). Assume that the claim is true for k = 0, 1, 2, . . . , 3n+ 3. Then,
since q3n+4 = q3n+3q3n+2 we have, by Corollary 3.2(i) that ∆(q3n+3) = 0, so that the
action of q3n+3 leaves the direction α unchanged. Passing to vectors we have

−−−−→αq_
3n+4 = −−−−→αq_

3n+3 +
−−−−→
αq_

3n+2

= α ·
(−−−−→

1q_
3n+3 +

−−−−→
1q_

3n+2

)
= α ·

(
(P (n+ 1), (−1)n+1P (n+ 1)) + (P (n) + P (n+ 1), 0)

)
= α ·

(
2P (n+ 1) + P (n), (−1)n+1P (n+ 1)

)
= α ·

(
P (n+ 2), (−1)n+1P (n+ 1)

)
.
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The two other cases are similar and are left to the reader.

The first values of endpoint coordinates of the paths q_
n starting from the origin with

initial step α = (1, 0) are :

n 0 1 2 3 4 5

q_
3n (0, 0) (1,−1) (2, 2) (5,−5) (12, 12) (29,−29)

q_
3n+1 (1, 0) (2,−1) (5, 2) (12,−5) (29, 12) (70,−29)
q_

3n+2 (1, 0) (3, 0) (7, 0) (17, 0) (41, 0) (99, 0)

Lemma 3.3 is illustrated in Figure 5 below, whereQn denotes the smallest rectangle
box containing q_

n. This leads to the geometric construction of the paths qn, using the

Q 6

  

7

Q 10

(17,0)

(12,!5)(5,!5)

(2,2) (5,2)

(7,0)
(0,0)

Q

Q 6

8

Q 9

Q9 9

Q 11

Q

Q

FIGURE 5. The geometric construction of the Fibonacci paths.

symmetries deduced from Proposition 3.1 and Lemma 2.6,

Qn =

Qn−1Qn−2 if n ≡ 2 mod 3,

Qn−1Qn−2 if n ≡ 0, 1 mod 3,

where the sides of the box are determined by the origin and the endpoint of q_
n. Clearly

each box is contained in the next one (by prefix property), and the sides have a±π
4 angle

since Q3n is so. Observe also that this implies that Q3n+2 has a vertical symmetry axis
for every n given by the line z = P (n)+P (n+1)

2 .

Theorem 3.4. For all n ∈ N, the paths qn satisfy the following properties:

(i) (q3n+1)3q_
3n+1 is closed;

(ii) (q3n+2)3q_
3n+2 is closed;

(iii) qn is non-intersecting;

(iv) (q3n+1)3q_
3n+1 is non-intersecting.
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Proof. (i) Since ∆(ta) = ∆(a) = ±1, we are in case (i) of Theorem 2.4 and the
result follows.

(ii) As in (i).

(iii) Since by definition qn is a prefix of qn+1, it suffices to prove that q3n is non-
intersecting for all n ∈ N. First, we show by induction that

(3) q_
3n = q3n−1q

_
3n−2 = q3n−2q

_
3n−1.

Indeed, it is clearly true for n = 1. Then, we have

q_
3n+3 = q3n+2q

_
3n+1 = q3n+1q3n · q_

3n+1 = q3n+1q3n · q3nq
_
3n−1

= q3n+1q3n · q3n−1q3n−2 · q_
3n−1

= q3n+1 · q3nq3n−1 · q3n−2q
_
3n−1

= q3n+1 · q3n+1 · q_
3n (by induction hypothesis)

= q3n+1 · q_
3n+2 (by definition).

We finish the proof by induction. Assume that q_
3n−1 is non-intersecting, which

implies that q_
3n−k is also non-intersecting for all k ∈ N such that 1 ≤ k ≤ 3n − 1.

Passing to boxes, we have from Equation (3)

Q3n = Q3n−1Q3n−2 = Q3n−2Q3n−1,

where there is no intersection in neither left or right box Q3n−1.

(iv) Theorem 2.4 implies that (q3n+1)3q_
3n+1 is non-intersecting if (q3n+1)2 is non-

intersecting. But we have

(q3n+1)2 = q3nq3n−1 · q3nq3n−1

= q3n · q3n−1q3n−1 · q3n−2 q3n−1,

and since q3n−1q3n−1 is a factor of q3n+2, a non-intersecting path by (iii), the claim
follows.

A Fibonacci snowflake or tile of order n is a polyomino TF (n) represented by the
word φn = (q3n+1)3q_

3n+1, where n ∈ N. The first Fibonacci snowflakes are shown in
Figure 6.

FIGURE 6. Fibonacci snowflakes of order n = 0, 1, 2, 3, 4.

We have already mentioned that the perimeter L(n) of the snowflake of rank n is

L(n) = 4F (3n+ 1) =
4√
5

(
1 +
√

5

2

)3n+1

− 4√
5

(
1−
√

5

2

)3n+1

.
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Let (A(n))n∈N be the sequence of areas of the Fibonacci snowflakes. Its first values
are

1, 5, 29, 169, 985, 5741, 33461, 195025, 1136689, 6625109, 38613965, . . . ,

which we shall prove to be the odd index numbers in the Pell sequence whose first
values are

0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782, 195025, . . .

Recall that the sequence of Pell numbers satisfies the following identity [2]

(4) P (2n+ 1) = P (n+ 1)2 + P (n)2.

We are now ready to prove our result on the area of the Fibonacci snowflakes.

Theorem 3.5. We have A(n) = P (2n+ 1).

Proof. The parallelogram determined by the word (q3n+1)3q_
3n+1 is a square (The-

orem 2.4(i)), and by Lemma 2.6(ii) the area of TF (n) is equal to the area of the square
determined by

−−−−→αq_
3n+1 =

(
P (n+ 1),±P (n)

)
.

Hence A(n) = P (n+ 1)2 + P (n)2 which is equal to P (2n+ 1) by Equation (4).

It follows that A(n) satisfies the recurrence formulas

A(0) = 1, A(1) = 5; A(n) = 6A(n− 1)−A(n− 2), for n > 1.

and that its general term is

A(n) =

√
2 + 1

2
√

2

(
3 + 2

√
2
)n

+

√
2− 1

2
√

2

(
3− 2

√
2
)n
.

This sequence is already known as defining the numbers n such that 2n2−1 is a square
(see A001653 in [12]) but also for counting diverse combinatorial objects.

Fibonacci snowflakes reveal a new connection between the Fibonacci numbers of
index 3n+1 and odd-index Pell numbers. It is worth noticing that the Markoff numbers
also link the two sequences but in a different way: indeed, all odd-index Pell numbers
and all odd-index Fibonacci numbers are particular Markoff numbers, a fact already
observed by Frobenius [7]. The reader is refered to [5, 10] for recent developments in
that direction.

Other connections may be found in combinatorics. For instance, the number of
two-stack sortable permutations which avoid the pattern 132 is the Pell number Pn,
while the number of two-stack sortable permutations avoiding both 132 and 4123 is
Fn+4 − 2n− 2 [6].

A measure of the complexity of the snowflakes. We compute now the limit ratio
limn→∞

A(n)
H(n) between the area of the Fibonacci snowflake and the area of its convex

hull, which is half of the area S(n) of the smallest square having sides parallel to the
axes and containing it. The squared tiles are shown in Figure 7 for n = 2, 3, where
(A,B) = (P (n+ 1), (−1)nP (n)) are the coordinates of−−−−→αq_

3n+1 given by Lemma 3.3.
It is easy to compute S(n) :
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2
A+B

!3A+B
2

(5,2)

FIGURE 7. Squared Fibonacci snowflakes of order n = 2, 3, 4.

S(n) =

(
A+B

2
− −3A+B

2
− 1

)2

= (2A− 1)2 =
(
2P (n+ 1)− 1

)2
.

Then the limit ratio is computed as follows.

lim
n→∞

A(n)

H(n)
= 2 lim

n→∞

P (2n+ 1)

(2P (n+ 1)− 1)2

= 2 lim
n→∞

P (n+ 1)2 + P (n)2

(2P (n+ 1)− 1)2
(by Equation (4))

= 2 lim
n→∞

P (n+ 1)2 + P (n)2

4P (n+ 1)2 − 4P (n+ 1) + 1

=
2

4

(
1 +

(
lim
n→∞

P (n)

P (n+ 1)

)2
)

= 2−
√

2 ≈ 0.585786438.

On the other hand, the value of the ratio

lim
n→∞

log(A(n))

log(L(n))
≈ 0.964825683 . . .

seems to be linked, loosely speaking, to the complexity of the shape of the boundary
of a given nonempty interior set. For a square it equals 2, while for a long and thin
rectangle it is practically 1. In the present case the value 0.96482 . . . is a strong hint
towards the complicated behavior of our snowflakes.

4. Last remarks

Fibonacci snowflakes are somehow related to the Fibonacci fractals found in [8].
They also form a subclass of tiles used for tiling the plane. Indeed, each Fibonacci tile
may be used for tiling the whole plane with translated copies of it, as shown in Figure 2
and 9. More precisely, there exist a class of tiles, called pseudo-squares, characterized
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by the equation (due to Beauquier and Nivat [1])

b(P ) ≡ A ·B · Â · B̂,

where b(P ) ∈ T ∗ is a simple closed path. Each such factorization defines the homol-
ogous sides of the tile, and hence the way to assemble them.

FIGURE 8. Two distinct factorizations.

For instance, the tile TF (2) in Figure 8 may be assembled as shown on the right. It
was conjectured in [9] that a pseudo-square polyomino has at most two distinct nontriv-
ial factorizations, and the Fibonacci tiles are an infinite family having this property [3],
providing two distinct tesselations as shown in Figure 9.

FIGURE 9. Distinct tesselations with TF (2).
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