Every polyomino yields at most two square tilings

A. Blondin Massé, S. Brlek, A. Garon and S. Labbé

March 29, 2010

1 Introduction

The problem of designing an efficient algorithm for deciding whether a given polygon tiles the plane becomes more tractable when restricted to polyominoes, that is, subsets of the square lattice \mathbb{Z}^2 whose boundary is a non-crossing closed path (see [6] for more on tilings and [3] for related problems). Here, we consider tilings obtained by translation of a single polyomino, called *exact* in [9]. Paths are conveniently described by words on the alphabet $\{0, 1, 2, 3\}$, representing the elementary grid steps $\{\rightarrow, \uparrow, \leftarrow, \downarrow\}$. Beauquier and Nivat [1] characterized exact polyominoes by showing that the boundary word b(P) of such a polyomino satisfies the equation $b(P) = X \cdot Y \cdot Z \cdot \hat{X} \cdot \hat{Y} \cdot \hat{Z}$, where at most one of the variables is empty and where \widehat{W} is the path W traveled in the opposite direction. Frow now on, this condition is referred as the BN-factorization. An exact polyomino is said to be a *hexagon* if none of the variables X, Y, Z is empty and a *square* if one of them is so. Note that a single polyomino may lead to many tilings

Figure 1: The three hexagonal tilings of the 4×1 rectangle.

of the plane: for instance the $n \times 1$ rectangle does it in n-1 distinct ways as a hexagon (see Figure 1) whereas Christoffel and Fibonacci tiles introduced recently [2] are examples of double squares (see Figure 2). However, it was

Figure 2: A Christoffel Tile yields two distinct non-symmetric square tilings of the plane.

conjectured by Brlek, Dulucq, Fédou and Provençal in 2007 (see [8] for more

details) that an exact polyomino tiles the plane as a square in at most two distinct ways. In this extended abstract, we prove this conjecture, using the symmetries induced by the BN-factorization.

Theorem 1. Every polyomino yields at most two square tilings.

2 Preliminaries

The usual terminology and notation on words is from Lothaire [7]. An alphabet \mathcal{A} is a finite set whose elements are letters. A finite word w is a function $w : [1, 2, \ldots, n] \to \mathcal{A}$, where w_i is the *i*-th letter, $1 \leq i \leq n$. The length of w, denoted by |w|, is the integer n. The length of the empty word is 0. The free monoid \mathcal{A}^* is the set of all finite words over \mathcal{A} . The reversal of $w = w_1 w_2 \cdots w_n$ is the word $\tilde{w} = w_n w_{n-1} \cdots w_1$. A word u is a factor of another word w if there exist $x, y \in \mathcal{A}^*$ such that w = xuy. We denote by $|w|_u$ the number of times that u appears in w. Two words u and v are conjugate, written $u \equiv v$ or sometimes $u \equiv_{|x|} v$, if there exist x, y such that u = xy and v = yx. In this paper, the alphabet $\mathcal{F} = \{0, 1, 2, 3\}$ is considered as the additive group of integers mod 4. Basic transformations on \mathcal{F} are rotations $\rho^i : x \mapsto x + i$ and reflections $\sigma_i : x \mapsto i - x$, which extend uniquely to morphisms (w.r.t concatenation) on \mathcal{F}^* . Given a nonempty word $w \in \mathcal{F}^*$, the first differences word $\Delta w \in \mathcal{F}^*$ of wis

$$\Delta w = (w_2 - w_1) \cdot (w_3 - w_2) \cdots (w_n - w_{n-1}).$$

One may verify that if $z \in \mathcal{F}^*$, then $\Delta wz = \Delta w \Delta (w_n z_1) \Delta z$. We introduce another function well-defined on conjugacy classes and circular words:

$$\Delta w = (w_2 - w_1) \cdot (w_3 - w_2) \cdots (w_n - w_{n-1}) \cdot (w_1 - w_n) = \Delta w \cdot (w_1 - w_n).$$

Figure 3: (a) The path w = 01012223211. (b) Its first differences word $\Delta w = 1311001330$. (c) Its reversal $\hat{w} = 33010003232$.

Let M be a \mathbb{Z} -module and $\mu : \mathcal{F}^* \to M$ be a morphism, i.e., $\mu(wz) = \mu(w) + \mu(z)$ for all $w, z \in \mathcal{F}^*$. The μ -path of a word $w \in \mathcal{F}^*$ is the finite sequence of partial sums $\mathcal{P}w = \left(\sum_{i=1}^k \mu(w_i)\right)_{0 \le k \le n}$. In what follows, we consider the square lattice $M = \mathbb{Z} \times \mathbb{Z}$ and $\mu : \mathbf{0} \mapsto (1, 0), \mathbf{1} \mapsto (0, 1),$

$$\mathbf{2} \mapsto (-1,0), \quad \mathbf{1} \mapsto (0,1), \\ \mathbf{2} \mapsto (-1,0), \quad \mathbf{3} \mapsto (0,-1).$$

which corresponds to the Freeman chain code [5], we write *path* as a shorthand for μ -path and we say that w describes the path $\mathcal{P}w$. Furthermore, we say that a path $\mathcal{P}w$ is *closed* if $\mu(w) = (0,0)$ or equivalently if it satisfies $|w|_{\mathbf{0}} = |w|_{\mathbf{2}}$ and $|w|_{\mathbf{1}} = |w|_{\mathbf{3}}$. A path $\mathcal{P}w$ is simple if no proper factor of w describes a closed path. A boundary word describes a simple and closed path. A polyomino is a subset of \mathbb{Z}^2 contained in some boundary word. Finally, the word $\widehat{w} := \rho^2(\widetilde{w})$ describes the same path as w traveled in the opposite direction (see Figure 3). The turning number of a closed path $\mathcal{P}w$ is $\mathcal{T}(\overset{\circ}{\Delta}w) = \left(|\overset{\circ}{\Delta}w|_{\mathbf{1}} - |\overset{\circ}{\Delta}w|_{\mathbf{3}}\right)/4$ and corresponds to its total curvature divided by 2π . A closed path is positively oriented if its turning number is positive.

Lemma 1. If $XY\widehat{X}\widehat{Y}$ is the positively oriented boundary word of a square, then

 $\overset{\circ}{\Delta} XY\widehat{X}\widehat{Y} = \Delta X\cdot \mathbf{1}\cdot \Delta Y\cdot \mathbf{1}\cdot \Delta \widehat{X}\cdot \mathbf{1}\cdot \Delta \widehat{Y}\cdot \mathbf{1}.$

Proof. The equation $\mathcal{T}(\Delta w) = -\mathcal{T}(\Delta \widehat{w})$ holds for all $w \in \mathcal{F}^*$ and the turning number of a positively oriented boundary word is 1.

3 Proof of Theorem 1

In this section, we suppose that there exists a polyomino that tiles the plane as a square in three ways, i.e., its positively oriented boundary word has three distinct square factorizations given by

$$UV\widehat{U}\widehat{V} \equiv_{d_1} XY\widehat{X}\widehat{Y} \equiv_{d_2} WZ\widehat{W}\widehat{Z}.$$
(1)

Lemma 2. [4, 8] If an exact polynomino satisfies $UV\widehat{U}\widehat{V} \equiv_{d_1} XY\widehat{X}\widehat{Y}$, then the factorization must alternate, i.e., $0 < d_1 < |U| < d_1 + |X|$.

Hence, we must have the situation depicted in Figure 4 (a).

Figure 4: (a) Three distinct square factorizations of a tile. Note that $0 < d_1 < d_1 + d_2 < |U| < d_1 + |X| < d_1 + d_2 + |W|$. (b) One has $x_i = y_i = \mathbf{1}$ for all $i \in I$.

Let $I = \{0, d_1, d_1+d_2, |U|, d_1+|X|, d_1+d_2+|W|\}$. It follows from Lemma 2 that all these positions are distinct, that is |I| = 6. Furthermore, it is convenient to consider the first differences word of the boundary word as two parts

$$\begin{aligned} x &= x_0 x_1 x_2 \cdots x_{n-1} &= \mathbf{1} \cdot \Delta U \cdot \mathbf{1} \cdot \Delta V, \\ y &= y_0 y_1 y_2 \cdots y_{n-1} &= \mathbf{1} \cdot \Delta \widehat{U} \cdot \mathbf{1} \cdot \Delta \widehat{V}, \end{aligned}$$

where n = |x| = |y| is the half-perimeter. Note that **1** occurs in both x and y for each position $i \in I$ (see Figure 4 (b)). Three reflections on \mathbb{Z}_n are useful:

$$s_1: i \mapsto (|U| - i) \mod n,$$

$$s_2: i \mapsto (|X| + 2d_1 - i) \mod n,$$

$$s_3: i \mapsto (|W| + 2(d_1 + d_2) - i) \mod n$$

From Lemma 2, the reflections s_1 , s_2 and s_3 are pairwise distinct. We say that the application s_1 is *admissible* on i if $i \notin \{0, |U|\}$ and similarly for the application s_2 if $i \notin \{d_1, |X| + d_1\}$ and for s_3 if $i \notin \{d_1 + d_2, |W| + d_1 + d_2\}$. Below we denote $\overline{\alpha} := \sigma_0(\alpha)$ so that $\overline{\mathbf{0}} = \mathbf{0}$, $\overline{\mathbf{1}} = \mathbf{3}$, $\overline{\mathbf{2}} = \mathbf{2}$ and $\overline{\mathbf{3}} = \mathbf{1}$. The fact that $(\Delta w)_i = \overline{(\Delta \widehat{w})}_{|w|-i}$ for all $w \in \{U, V, X, Y, W, Z\}$ and $1 \leq i \leq |w| - 1$ then translates nicely in terms of x, y and reflections s_1, s_2 and s_3 .

Lemma 3. Let $i \in \mathbb{Z}_n$ and $j \in \{1, 2, 3\}$ such that s_j is admissible on i. Then

- (i) $y_i = \overline{x_{s_i(i)}}$ and $x_i = \overline{y_{s_i(i)}}$.
- (ii) If $x_i = y_i$, then $x_{s_i(i)} = y_{s_i(i)}$.

We say that the application of a product of reflections $s_{j_m}s_{j_{m-1}}\cdots s_{j_2}s_{j_1}$ is admissible on *i* if each application of s_{j_k} is admissible on $s_{j_{k-1}}\cdots s_{j_2}s_{j_1}(i)$. Finally we say that $i \in \mathbb{Z}_n$ is reachable if there exist an admissible product of reflections *S* and $i' \in I$ such that i = S(i'). Roughly speaking, an index is reachable if one of the six initial **1** letters propagate to that position.

Lemma 4. Let $i \in \mathbb{Z}_n$ be reachable and S be an admissible product of reflections on i. Then $x_i = y_i$ and

$$x_{i} = \begin{cases} x_{S(i)} & \text{if } S \text{ is a rotation,} \\ \overline{x_{S(i)}} & \text{if } S \text{ is a reflection.} \end{cases}$$

We are now ready to show the main result.

Proof of Theorem 1. Arguing by contradiction, assume that a polyomino satisfying Equation (1) exists, and that the formalism and lemmas above apply. We have $s_1 = s_2 s_3 s_1 s_2 s_3$. If $s_2 s_3 s_1 s_2 s_3$ is admissible on 0, then

$$\mathbf{1} = x_0 = \overline{x_{s_2 s_3 s_1 s_2 s_3(0)}} = \overline{x_{s_1(0)}} = \overline{x_{|U|}} = \overline{\mathbf{1}} = \mathbf{3}$$

which is a contradiction. Thus $s_2s_3s_1s_2s_3$ is not admissible on 0. Having s_3 not admissible on 0 is impossible since s_3 is admissible on everything but $d_1 + d_2$ and $|W| + d_1 + d_2$. Having s_2 not admissible on $s_3(0)$ is also impossible since this implies that

$$\mathbf{1} = x_0 = \overline{x_{s_3(0)}} = \overline{\mathbf{1}} = \mathbf{3}$$

Similar arguments show that supposing s_2 not admissible on $s_3s_1s_2s_3(0)$ or s_3 not admissible on $s_1s_2s_3(0)$ leads to a contradiction. Hence, we must have that s_1 is not admissible on $s_2s_3(0)$. Again there are two cases: either $s_2s_3(0) = 0$

Figure 5: Reflections in action on x where n = 30, $d_1 = 3$, $d_2 = 5$, |U| = 17, |X| = 17and |W| = 15. The product of reflections $s_3s_2s_1s_3s_2$ is admissible on 0 so that $\mathbf{1} = x_0 = \overline{x_{s_3s_2s_1s_3s_2(0)}} = \overline{x_{17}} = \overline{\mathbf{1}} = \mathbf{3}$ a contradiction.

or $s_2s_3(0) = |U|$. In the first case, we must have $s_2 = s_3$ which is a contradiction. Hence, there is only one possibility : $s_2s_3(0) = |U|$. We also have $s_1 = s_3s_2s_1s_3s_2$ and using exactly the same argument, we also conclude that $s_3s_2(0) = |U|$. But then, $s_3s_2 = s_2s_3$ so that s_2 and s_3 must be perpendicular since they are not equal. We also have $s_2 = s_1s_3s_2s_1s_3$ and $s_2 = s_3s_1s_2s_3s_1$ so that for the same reason as above, we deduce that s_1 and s_3 are perpendicular. But we already know that s_2 and s_3 are perpendicular. This implies $s_1 = s_2$ which is impossible, and the proof is complete.

References

- D. Beauquier and M. Nivat. On translating one polyomino to tile the plane. Discrete Comput. Geom., 6:575–592, 1991.
- [2] A. Blondin Massé, S. Brlek, A. Garon, and S. Labbé. Christoffel and Fibonacci tiles. In S. Brlek, X. Provençal, and C. Reutenauer, editors, *DGCI 2009, 15th IAPR Int. Conf.* on Discrete Geometry for Computer Imagery, Springer-Verlag LNCS 5810, 67–78, 2009.
- [3] P. Brass, W. Moser, and J. Pach. Research Problems in Discrete Geometry. Springer-Verlag New York, 2005.
- S. Brlek, X. Provençal, and J.-M. Fédou. On the tiling by translation problem. Discrete Applied Mathematics, 157(3):464–475, 2009.
- [5] H. Freeman. On the encoding of arbitrary geometric configurations. IRE Trans. Electronic Computer, 10:260–268, 1961.
- [6] B. Grünbaum and G. C. Shephard. *Tilings and Patterns*. W. H. Freeman, New York, 1987.
- [7] M. Lothaire. Combinatorics on Words. Cambridge University Press, Cambridge, 1997.
- [8] X. Provençal. Combinatoire des mots, géométrie discrète et pavages. PhD thesis, D1715, Université du Québec à Montréal, 2008.
- [9] H. A. G. Wijshoff and J. van Leeuven. Arbitrary versus periodic storage schemes and tesselations of the plane using one type of polyomino. *Inform. Control*, 62:1–25, 1984.