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1 Introduction

The problem of designing an efficient algorithm for deciding whether a given
polygon tiles the plane becomes more tractable when restricted to polyominoes,
that is, subsets of the square lattice Z2 whose boundary is a non-crossing closed
path (see [6] for more on tilings and [3] for related problems). Here, we consider
tilings obtained by translation of a single polyomino, called exact in [9]. Paths
are conveniently described by words on the alphabet {0,1,2,3}, representing
the elementary grid steps {→, ↑,←, ↓}. Beauquier and Nivat [1] characterized
exact polyominoes by showing that the boundary word b(P ) of such a polyomino

satisfies the equation b(P ) = X ·Y ·Z ·X̂ ·Ŷ ·Ẑ, where at most one of the variables

is empty and where Ŵ is the path W traveled in the opposite direction. Frow
now on, this condition is referred as the BN-factorization. An exact polyomino
is said to be a hexagon if none of the variables X, Y , Z is empty and a square
if one of them is so. Note that a single polyomino may lead to many tilings

Figure 1: The three hexagonal tilings of the 4× 1 rectangle.

of the plane: for instance the n × 1 rectangle does it in n − 1 distinct ways
as a hexagon (see Figure 1) whereas Christoffel and Fibonacci tiles introduced
recently [2] are examples of double squares (see Figure 2). However, it was

Figure 2: A Christoffel Tile yields two distinct non-symmetric square tilings of the plane.

conjectured by Brlek, Dulucq, Fédou and Provençal in 2007 (see [8] for more
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details) that an exact polyomino tiles the plane as a square in at most two
distinct ways. In this extended abstract, we prove this conjecture, using the
symmetries induced by the BN-factorization.

Theorem 1. Every polyomino yields at most two square tilings.

2 Preliminaries

The usual terminology and notation on words is from Lothaire [7]. An alpha-
bet A is a finite set whose elements are letters. A finite word w is a function
w : [1, 2, . . . , n] → A, where wi is the i-th letter, 1 ≤ i ≤ n. The length of w,
denoted by |w|, is the integer n. The length of the empty word is 0. The free
monoid A∗ is the set of all finite words over A. The reversal of w = w1w2 · · ·wn

is the word w̃ = wnwn−1 · · ·w1. A word u is a factor of another word w if there
exist x, y ∈ A∗ such that w = xuy. We denote by |w|u the number of times
that u appears in w. Two words u and v are conjugate, written u ≡ v or some-
times u ≡|x| v, if there exist x, y such that u = xy and v = yx. In this paper,
the alphabet F = {0,1,2,3} is considered as the additive group of integers
mod 4. Basic transformations on F are rotations ρi : x 7→ x+ i and reflections
σi : x 7→ i − x, which extend uniquely to morphisms (w.r.t concatenation) on
F∗. Given a nonempty word w ∈ F∗, the first differences word ∆w ∈ F∗ of w
is

∆w = (w2 − w1) · (w3 − w2) · · · (wn − wn−1).

One may verify that if z ∈ F∗, then ∆wz = ∆w∆(wnz1)∆z. We introduce
another function well-defined on conjugacy classes and circular words:
◦
∆ w = (w2 − w1) · (w3 − w2) · · · (wn − wn−1) · (w1 − wn) = ∆w · (w1 − wn).

0

01

11

1 2 2 2

2

3

(a)

00
0

1

1

11

3
33(b)

2

2
3

33

3 0 0 0

0

1

(c)

Figure 3: (a) The path w = 01012223211. (b) Its first differences word ∆w = 1311001330.
(c) Its reversal ŵ = 33010003232.

Let M be a Z-module and µ : F∗ →M be a morphism, i.e., µ(wz) = µ(w)+µ(z)
for all w, z ∈ F∗. The µ-path of a word w ∈ F∗ is the finite sequence of partial

sums Pw =
(∑k

i=1 µ(wi)
)
0≤k≤n

. In what follows, we consider the square lattice

M = Z× Z and
µ : 0 7→ (1, 0), 1 7→ (0, 1),

2 7→ (−1, 0), 3 7→ (0,−1).

which corresponds to the Freeman chain code [5], we write path as a shorthand
for µ-path and we say that w describes the path Pw. Furthermore, we say that
a path Pw is closed if µ(w) = (0, 0) or equivalently if it satisfies |w|0 = |w|2 and
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|w|1 = |w|3. A path Pw is simple if no proper factor of w describes a closed
path. A boundary word describes a simple and closed path. A polyomino is a
subset of Z2 contained in some boundary word. Finally, the word ŵ := ρ2(w̃)
describes the same path as w traveled in the opposite direction (see Figure 3).

The turning number of a closed path Pw is T (
◦
∆ w) =

(
|
◦
∆ w|1 − |

◦
∆ w|3

)
/4

and corresponds to its total curvature divided by 2π. A closed path is positively
oriented if its turning number is positive.

Lemma 1. If XY X̂Ŷ is the positively oriented boundary word of a square, then

◦
∆ XY X̂Ŷ = ∆X · 1 ·∆Y · 1 ·∆X̂ · 1 ·∆Ŷ · 1.

Proof. The equation T (∆w) = −T (∆ŵ) holds for all w ∈ F∗ and the turning
number of a positively oriented boundary word is 1.

3 Proof of Theorem 1

In this section, we suppose that there exists a polyomino that tiles the plane
as a square in three ways, i.e., its positively oriented boundary word has three
distinct square factorizations given by

UV ÛV̂ ≡d1 XY X̂Ŷ ≡d2 WZŴẐ. (1)

Lemma 2. [4, 8] If an exact polyomino satisfies UV ÛV̂ ≡d1
XY X̂Ŷ , then the

factorization must alternate, i.e., 0 < d1 < |U | < d1 + |X|.

Hence, we must have the situation depicted in Figure 4 (a).

(a)
d1

d2

U V Û V̂
X Y X̂ Ŷ

W Z Ŵ Ẑ

(b)
d1

d2

x y

∆U1 ∆V1 ∆Û1 ∆V̂1

∆X1 ∆Y1 ∆X̂1 ∆Ŷ1

∆W1 ∆Z1 ∆Ŵ1 ∆Ẑ1

Figure 4: (a) Three distinct square factorizations of a tile. Note that 0 < d1 < d1 + d2 <
|U | < d1 + |X| < d1 + d2 + |W |. (b) One has xi = yi = 1 for all i ∈ I.

Let I = {0, d1, d1+d2, |U |, d1+|X|, d1+d2+|W |}. It follows from Lemma 2 that
all these positions are distinct, that is |I| = 6. Furthermore, it is convenient to
consider the first differences word of the boundary word as two parts

x = x0x1x2 · · ·xn−1 = 1 ·∆U · 1 ·∆V,
y = y0y1y2 · · · yn−1 = 1 ·∆Û · 1 ·∆V̂ ,
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where n = |x| = |y| is the half-perimeter. Note that 1 occurs in both x and y
for each position i ∈ I (see Figure 4 (b)). Three reflections on Zn are useful:

s1 : i 7→ (|U | − i) mod n,

s2 : i 7→ (|X|+ 2d1 − i) mod n,

s3 : i 7→ (|W |+ 2(d1 + d2)− i) mod n.

From Lemma 2, the reflections s1, s2 and s3 are pairwise distinct. We say
that the application s1 is admissible on i if i 6∈ {0, |U |} and similarly for the
application s2 if i 6∈ {d1, |X| + d1} and for s3 if i 6∈ {d1 + d2, |W | + d1 + d2}.
Below we denote α := σ0(α) so that 0 = 0, 1 = 3, 2 = 2 and 3 = 1. The fact
that (∆w)i = (∆ŵ)|w|−i for all w ∈ {U, V,X, Y,W,Z} and 1 ≤ i ≤ |w| − 1 then
translates nicely in terms of x, y and reflections s1, s2 and s3.

Lemma 3. Let i ∈ Zn and j ∈ {1, 2, 3} such that sj is admissible on i. Then

(i) yi = xsj(i) and xi = ysj(i).

(ii) If xi = yi, then xsj(i) = ysj(i).

We say that the application of a product of reflections sjmsjm−1 · · · sj2sj1 is
admissible on i if each application of sjk is admissible on sjk−1

· · · sj2sj1(i).
Finally we say that i ∈ Zn is reachable if there exist an admissible product of
reflections S and i′ ∈ I such that i = S(i′). Roughly speaking, an index is
reachable if one of the six initial 1 letters propagate to that position.

Lemma 4. Let i ∈ Zn be reachable and S be an admissible product of reflections
on i. Then xi = yi and

xi =

{
xS(i) if S is a rotation,

xS(i) if S is a reflection.

We are now ready to show the main result.

Proof of Theorem 1. Arguing by contradiction, assume that a polyomino satis-
fying Equation (1) exists, and that the formalism and lemmas above apply. We
have s1 = s2s3s1s2s3. If s2s3s1s2s3 is admissible on 0, then

1 = x0 = xs2s3s1s2s3(0) = xs1(0) = x|U | = 1 = 3

which is a contradiction. Thus s2s3s1s2s3 is not admissible on 0. Having s3 not
admissible on 0 is impossible since s3 is admissible on everything but d1 + d2
and |W | + d1 + d2. Having s2 not admissible on s3(0) is also impossible since
this implies that

1 = x0 = xs3(0) = 1 = 3.

Similar arguments show that supposing s2 not admissible on s3s1s2s3(0) or s3
not admissible on s1s2s3(0) leads to a contradiction. Hence, we must have that
s1 is not admissible on s2s3(0). Again there are two cases: either s2s3(0) = 0
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Figure 5: Reflections in action on x where n = 30, d1 = 3, d2 = 5, |U | = 17, |X| = 17
and |W | = 15. The product of reflections s3s2s1s3s2 is admissible on 0 so that 1 = x0 =
xs3s2s1s3s2(0) = x17 = 1 = 3 a contradiction.

or s2s3(0) = |U |. In the first case, we must have s2 = s3 which is a contra-
diction. Hence, there is only one possibility : s2s3(0) = |U |. We also have
s1 = s3s2s1s3s2 and using exactly the same argument, we also conclude that
s3s2(0) = |U |. But then, s3s2 = s2s3 so that s2 and s3 must be perpendicular
since they are not equal. We also have s2 = s1s3s2s1s3 and s2 = s3s1s2s3s1 so
that for the same reason as above, we deduce that s1 and s3 are perpendicular.
But we already know that s2 and s3 are perpendicular. This implies s1 = s2
which is impossible, and the proof is complete.
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