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1 Introduction

The problem of designing an efficient algorithm for deciding whether a given
polygon tiles the plane becomes more tractable when restricted to polyominoes,
that is, subsets of the square lattice Z? whose boundary is a non-crossing closed
path (see [6] for more on tilings and [3] for related problems). Here, we consider
tilings obtained by translation of a single polyomino, called ezact in [9]. Paths
are conveniently described by words on the alphabet {0,1,2,3}, representing
the elementary grid steps {—,1, <, ]}. Beauquier and Nivat [1] characterized
exact polyominoes by showing that the boundary word b(P) of such a polyomino
satisfies the equation b(P) = X Y- Z-XY Z, where at most one of the variables
is empty and where W is the path W traveled in the opposite direction. Frow
now on, this condition is referred as the BN-factorization. An exact polyomino
is said to be a hexagon if none of the variables X, Y, Z is empty and a square
if one of them is so. Note that a single polyomino may lead to many tilings
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Figure 1: The three hexagonal tilings of the 4 x 1 rectangle.
of the plane: for instance the n x 1 rectangle does it in n — 1 distinct ways

as a hexagon (see Figure 1) whereas Christoffel and Fibonacci tiles introduced
recently [2] are examples of double squares (see Figure 2). However, it was
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Figure 2: A Christoffel Tile yields two distinct non-symmetric square tilings of the plane.

conjectured by Brlek, Dulucq, Fédou and Provencal in 2007 (see [8] for more



details) that an exact polyomino tiles the plane as a square in at most two
distinct ways. In this extended abstract, we prove this conjecture, using the
symmetries induced by the BN-factorization.

Theorem 1. FEvery polyomino yields at most two square tilings.

2 Preliminaries

The usual terminology and notation on words is from Lothaire [7]. An alpha-
bet A is a finite set whose elements are letters. A finite word w is a function
w:[1,2,...,n] = A, where w; is the i-th letter, 1 < i < n. The length of w,
denoted by |w], is the integer n. The length of the empty word is 0. The free
monoid A* is the set of all finite words over A. The reversal of w = wyws - - - wy,
is the word w = w,wy,_1 - -wy. A word u is a factor of another word w if there
exist z,y € A* such that w = zuy. We denote by |w], the number of times
that u appears in w. Two words u and v are conjugate, written u = v or some-
times u =, v, if there exist x, y such that v = xy and v = yx. In this paper,
the alphabet F = {0,1,2,3} is considered as the additive group of integers
mod 4. Basic transformations on F are rotations p’ :  + x + i and reflections
o; : * — i — x, which extend uniquely to morphisms (w.r.t concatenation) on
F*. Given a nonempty word w € F*, the first differences word Aw € F* of w
is
Aw = (wg —wy) - (wg —wa) -+ (wy, — Wp—1).

One may verify that if z € F*, then Awz = AwA(wy,21)Az. We introduce
another function well-defined on conjugacy classes and circular words:

&wz (wo —w1) - (w3 —wa) -+ (Wy, — wp—1) - (W1 —wy) = Aw - (w1 — wy,).
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Figure 3: (a) The path w = 01012223211. (b) Its first differences word Aw = 1311001330.
(c) Its reversal w = 33010003232.

Let M be a Z-module and i : F* — M be a morphism, i.e., u(wz) = p(w)+pu(z)
for all w, z € F*. The p-path of a word w € F* is the finite sequence of partial
sums Pw = (Zle u(wl)) . In what follows, we consider the square lattice
0<k<n
M =7 x Z and
wi 0 (1,0), 1 (0,1),
2+— (=1,0), 3+~ (0,-1).

which corresponds to the Freeman chain code [5], we write path as a shorthand

for p-path and we say that w describes the path Pw. Furthermore, we say that
a path Pw is closed if u(w) = (0,0) or equivalently if it satisfies |w|o = |w|2 and



|wly = |w|s. A path Pw is simple if no proper factor of w describes a closed
path. A boundary word describes a simple and closed path. A polyomino is a
subset of Z? contained in some boundary word. Finally, the word @ := p?(w)
describes the same path as w traveled in the opposite direction (see Figure 3).

The turning number of a closed path Pw is T(& w) = (\ A wly — | A w|3) /4

and corresponds to its total curvature divided by 27. A closed path is positively
oriented if its turning number is positive.

Lemma 1. IfXY)?}A/ 18 the positively oriented boundary word of a square, then
AXYXY =AX-1-AY-1-AX-1-AY-1.
Proof. The equation T (Aw) = =T (Aw) holds for all w € F* and the turning

number of a positively oriented boundary word is 1. O

3 Proof of Theorem 1

In this section, we suppose that there exists a polyomino that tiles the plane
as a square in three ways, i.e., its positively oriented boundary word has three
distinct square factorizations given by

UVOV =4, XYXY =4, WZWZ. (1)

Lemma 2. [4, 8] If an ezxact polyomino satisfies uvov =4, XYXY, then the
factorization must alternate, i.e., 0 < dy < |U| < dy + |X|.

Hence, we must have the situation depicted in Figure 4 (a).
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Figure 4: (a) Three distinct square factorizations of a tile. Note that 0 < di < d1 + d2 <
Ul <di +|X| <di+d2+|W]|. (b) One has z; =y; = 1 for all i € I.

Let I = {0,dy,d1+da, |U|,d1+|X]|,d1+d2+|W]|}. It follows from Lemma 2 that
all these positions are distinct, that is |[I| = 6. Furthermore, it is convenient to
consider the first differences word of the boundary word as two parts

r = Torixo---XTp_1 = 1-AU-1-AV,
Yy = Yoyry2: - Yan—1 = 1-AU-1-AV,



where n = |z| = |y| is the half-perimeter. Note that 1 occurs in both = and y
for each position ¢ € T (see Figure 4 (b)). Three reflections on Z,, are useful:

s1:1 — (U —14) mod n,
so:i = (| X|+2dy —i) modn,
sg:i +— ([W]|+2(di+d2) —¢) mod n.

From Lemma 2, the reflections s, so and s3 are pairwise distinct. We say
that the application s; is admissible on 4 if ¢ ¢ {0,|U|} and similarly for the
application sq if ¢ & {d1,|X| 4+ d1} and for s3 if i € {dy + do, |W| + d1 + da}.
Below we denote @ := o¢(c) so that 0 =0, 1 = 3,2 =2 and 3 = 1. The fact
that (Aw); = (AwW)|y|—; for all w € {U,V, X, Y, W, Z} and 1 <i < [w| — 1 then
translates nicely in terms of x, y and reflections s1, s and s3.

Lemma 3. Leti € Z,, and j € {1,2,3} such that s; is admissible on i. Then

(i) yi =75, ) and x; =Y, 3y -

(i) If i = yi, then x4,y = Ys;(5)-
We say that the application of a product of reflections sj s, ---5;,5; is
admissible on ¢ if each application of s;, is admissible on s, , ---$;,84 (4)-
Finally we say that ¢ € Z, is reachable if there exist an admissible product of

reflections S and ¢’ € I such that ¢ = S(i’). Roughly speaking, an index is
reachable if one of the six initial 1 letters propagate to that position.

Lemma 4. Leti € Z,, be reachable and S be an admissible product of reflections
oni. Then x; =y; and

sy 4f S is a rotation,
T; =
‘ Tgu) if S is a reflection.
We are now ready to show the main result.

Proof of Theorem 1. Arguing by contradiction, assume that a polyomino satis-
fying Equation (1) exists, and that the formalism and lemmas above apply. We
have s1 = s553515253. If $S953515253 is admissible on 0, then

1=x9= Lsys3518283(0) — Lsq1(0) = L|U| = 1=3

which is a contradiction. Thus s253515253 is not admissible on 0. Having s3 not
admissible on 0 is impossible since s3 is admissible on everything but d; + d»
and |W/| + dy + da. Having s3 not admissible on s3(0) is also impossible since
this implies that

1=10=T50 =1=3.
Similar arguments show that supposing ss not admissible on s3s18253(0) or s3

not admissible on s1$253(0) leads to a contradiction. Hence, we must have that
s1 is not admissible on s3s3(0). Again there are two cases: either s3s3(0) = 0
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Figure 5: Reflections in action on z where n = 30, di = 3, do = 5, |U| = 17, |X| = 17

and |W| = 15. The prgduct of reflections s3s25153s2 is admissible on 0 so that 1 = zg =

Tyysps18352(0) — £17 = 1 = 3 a contradiction.

or s283(0) = |U|. In the first case, we must have so = s3 which is a contra-
diction. Hence, there is only one possibility : s353(0) = |U|. We also have
$1 = S3S25158352 and using exactly the same argument, we also conclude that
s352(0) = |U|. But then, sgs2 = s253 so that so and s3 must be perpendicular
since they are not equal. We also have so = s153528153 and sy = 5351525351 SO
that for the same reason as above, we deduce that s; and s3 are perpendicular.
But we already know that sy and s3 are perpendicular. This implies s; = s2
which is impossible, and the proof is complete. O
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