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Extended abstract

The problem of designing an efficient algorithm for deciding whether a given
polygon tiles the plane becomes tractable when restricted to polyominoes, that
is, subsets of the square lattice Z2 whose boundary is a non-crossing closed path
(see [11] for more on tilings and [6] for related problems). Here, we consider
tilings obtained by translation of a single polyomino, called exact in [14]. Paths
are conveniently described by words on the alphabet {0,1,2,3}, representing
the elementary grid steps {→, ↑,←, ↓}. Beauquier and Nivat [1] characterized
exact polyominoes by showing that the boundary word b(P ) of such a polyomino

satisfies the equation b(P ) = X ·Y ·Z ·X̂ · Ŷ · Ẑ, where Ŵ is the path traveled in

the direction opposite to that of W (the paths W and Ŵ are said homologous).
From now on, this condition is referred to as the BN-factorization. In this
factorization, one of the variables may be empty, in which case P is called a
square, and hexagon otherwise. Note that a single polyomino may lead to several
distinct tilings of the plane: for instance the n × 1 rectangle does it in n − 1
distinct ways as a hexagon (see Figure 1).

Figure 1: The three hexagonal tilings of the 4 × 1 rectangle.

However, it was recently established [4] that an exact polyomino tiles the
plane as a square in at most two distinct ways. A polyomino having exactly two
distinct square tilings is called double square [13] and there is a linear time al-
gorithm to find all the square factorizations from its boundary word [9]. Double
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squares have a peculiar combinatorial structure and motivated developments in
equations on words involving periodicities and palindromes [2, 3]. Christoffel
and Fibonacci tiles were introduced in [5] as examples of infinite families of
double squares (see Figure 2) but do not characterize completely the class of
double square tiles (see Figure 3).

(a)

(b)

Figure 2: (a) A Christoffel tile yields two distinct non-symmetric square tilings of the
plane. (b) The Fibonacci tile of order 2 its two symmetric square tilings.

Figure 3: Some double square tiles that are neither Christoffel nor Fibonacci tiles.
The two square-factorizations in each case are represented by black and white dots.

In this extended abstract, we address this problem by showing that every
double square can be reduced to a composed cross pentamino by using some
reduction operators (Theorem 19). We show that these operators are invertible
which allows one to generate any double square tile from a composed cross
pentamino. Thus, an algorithm for the generation of double square tiles is
proposed. The reduction method allows to show that all double squares reducing
to the cross pentomino : have a BN-factorization consisting of palindromes, a
weaker form of a conjecture stated in Provençal thesis [13].

Some problems remain open. Although we proved that four reduction oper-
ators reduce any double square, we believe that only two of them are necessary.



1 Preliminaries

The usual terminology and notation on words is from Lothaire [12]. An alpha-
bet A is a finite set whose elements are letters. A finite word w is a function
w : [1, 2, . . . , n] → A, where wi is the i-th letter, 1 ≤ i ≤ n. The length of w,
denoted by |w|, is the integer n. The length of the empty word is 0. The free
monoid A∗ is the set of all finite words over A. The reversal of w = w1w2 · · ·wn

is the word w̃ = wnwn−1 · · ·w1. A word u is a factor of another word w if there
exist x, y ∈ A∗ such that w = xuy. We denote by |w|u the number of occur-
rences of u in w. Two words u and v are conjugate, written u ≡ v or sometimes
u ≡|x| v, when x, y are such that u = xy and v = yx. Conjugacy is an equiva-

lence relation ant the class of a word w is denoted w .
In this paper, the alphabet F = {0,1,2,3} is considered as the additive

group of integers mod 4. Basic transformations on F are rotations ρi : x 7→ x+i
and reflections σi : x 7→ i − x, which extend uniquely to morphisms (w.r.t
concatenation) on F∗. Given a nonempty word w ∈ F∗, the first differences
word ∆(w) ∈ F∗ of w is

∆(w) = (w2 − w1) · (w3 − w2) · · · (wn − wn−1). (1)

One may verify that if z ∈ F∗, then ∆(wz) = ∆(w)∆(wnz1)∆(z). Words in F∗
are interpreted as paths in the square grid as usual (See Figure 4), so that we
indistinctly talk of any word w ∈ F∗ as the path w.
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Figure 4: (a) The path w = 01012223211. (b) Its first differences word ∆(w) =
1311001330. (c) Its homologous ŵ = 33010003232.

Moreover, the word ŵ := ρ2(w̃) is homologous to w, that is, described in
direction opposite to that of w (see Figure 4). A word u ∈ F∗ may contain
factors in C = {02,20,13,31}, corresponding to cancelling steps on a path.
Nevertheless, each word w can be reduced in a unique way to a word w′, by
sequentially applying the rewriting rules in {u 7→ ε|u ∈ C}. The reduced word w′

of w is nothing but a word in P = F∗ \F∗CF∗. We define the turning number1

of w by T (w) = (|∆(w′)|1 − |∆(w′)|3) /4.
A path w is closed if it satisfies |w|0 = |w|2 and |w|1 = |w|3, and it is simple

if no proper factor of w is closed. A boundary word is a simple and closed
path, and a polyomino is a subset of Z2 contained in some boundary word. It
is convenient to represent each closed path w by its conjugacy class w , also
called circular word. An adjustment is necessary to the function T , for we take

1In [7, 8], the authors introduced the notion of winding number of w which is 4T (w)



into account the closing turn. The first differences also noted ∆ is defined on
any closed path w by setting

∆( w ) ≡ ∆(w) · (w1 − wn),

which is also a closed word. By applying the same rewriting rules, a circular
word w is circularly-reduced to a unique word w′ . If w is a closed path, then
the turning number1 of w is Td(w) = T ( w ) =

(
|∆( w′ )|1 − |∆( w′ )|3

)
/4.

It corresponds to its total curvature divided by 2π. And clearly, the turning
number T ( w ) of a closed path w belongs to Z (see [7, 8]). In particular, the
Daurat-Nivat relation [10] is rephrased as follows.

Proposition 1. The turning number of a boundary word w is Td(w) = ±1.

Now, we may define orientation: a boundary word w is positively oriented
(counterclockwise) if its turning number is Td(w) = 1. As a consequence, every
square satifies the following factorization

Proposition 2. Let w ≡ XY X̂Ŷ be the boundary word of a square, then

∆( w ) ≡ ∆(X) · α ·∆(Y ) · α ·∆(X̂) · α ·∆(Ŷ ) · α,

where α = 1 if w is positively oriented, α = 3 otherwise.

The following result is easy to check.

Proposition 3. Let w ≡ XY X̂Ŷ be an oriented boundary word of a square.
Then Fst(X) = Lst(X) and Fst(Y ) = Lst(Y ).

2 Admissible solutions

In this section, we introduce the useful notion of admissible solution in order to
describe all double squares. Its definition is motivated by the following result
stating that the BN-factorizations of a double square must alternate.

Lemma 4. [9, 13] If an exact polyomino satisfies ABÂB̂ ≡d XY X̂Ŷ , then the
factorization must alternate, i.e., 0 < d < |A| < d+ |X|.

Hence, we must have the situation depicted in Figure 5. Moreover, it is useful

A B Â B̂

w0 w1 w2 w3 w4 w5 w6 w7 w0

X Y X̂ Ŷ

d d

Figure 5: Finer factorization of a double square.

to encode double squares while keeping track of their (two) factorizations. For
that purpose, we refine the BN-factorization as follows.



Definition 5. An admissible solution is an 8-tuple (wi)i∈[0..7], wi ∈ F+, such
that |wi| = |wi+4| for i ∈ {0, 1, 2, 3} and

(i) ŵ0w1 = w4w5; (iii) ŵ2w3 = w6w7;
(ii) ŵ1w2 = w5w6; (iv) ŵ3w4 = w7w0.

Observe that every admissible solution (wi)i∈[0..7] is uniquely determined
by the words w0, w1, w2 and w3. The length of a solution S = (wi)i∈[0..7] is
naturally defined as |S| = |w0w1 · · ·w7|.

Example 6. Clearly, each double square factorization yields an admissible so-
lution. Indeed, consider the double square given in Figure 6: the black and
white dots together with the ending arrow uniquely determine the admissible
solution

(3,03010303,01030,10103010,1,21232121,23212,32321232).

Figure 6: A double square and its admissible solution. The black and white dots
distinguish the two BN-factorizations. The boundary of the polyomino is traveled
counter-clockwise and ends with the triangular arrow.

In what follows we exhibit the properties satisfied by admissible solutions.
To fix the notation, hereafter S = (wi)i∈[0..7] denotes an admissible solution,
and all indices are taken in Z8. The first result concerns periodicity.

Lemma 7. For all i, di = |wi+1|+ |wi+3| is a period of wi. Hence, there exist
ui, vi and ni such that

ŵi−3wi−1 = uivi (2)

wi = (uivi)
niui (3)

wi+1ŵi+3 = viui, (4)

where 0 ≤ |ui| < di. Moreover, d0 = d2 = d4 = d6 and d1 = d3 = d5 = d7.

A direct consequence is that the periods extend.

Corollary 8. For all i, di is a period of wi−1wiwi+1.

With the notation of Lemma 7, we have the following commuting properties.

Lemma 9. For all i, we have

uivi · wi = wi · viui, (5)

wi · ui+1vi+1 = ûi+5v̂i+5 · wi, (6)

vi−1ui−1 · wi = wi · v̂i+3ûi+3. (7)



With the notation of Lemma 7,

Lemma 10. For all i, the following properties hold

wiui+1 = ûi+5ŵi+4 (8)

uiwi+1 = ŵi+5ûi+4 (9)

wiv̂i+3 = vi+7ŵi+4 (10)

v̂iwi+3 = ŵi+7vi+4 (11)

Proof. The results follow from the decomposition in Lemma 7. We obtain (8)
and (10) by comparing the suffixes and prefixes of the following equality

wi+1v̂i+4 · ûi+4ŵi+3 = wi+1ŵi+3wi+1ŵi+3 = viuiviui = viŵi−3 · wi−1ui,

and doing a shift on the indices. We obtain (9) and (11) similarly from

ŵi−3ûi+4 · v̂i+4wi−1 = ŵi−3wi−1ŵi−3wi−1 = uiviuivi = uiwi+1 · ŵi+3vi.

With the notation of Lemma 7, we have

Lemma 11. ni 6= 0 =⇒ ni+1 = ni+3 = ni+5 = ni+7 = 0.

Lemma 12. Assume that di = |wi+1| + |wi+3| divides |wi|, i.e. ui is empty.
Let g = gcd(|wi+2|, di+2). Then

(i) wi+1 = ŵi+5 and wi+3 = ŵi+7,

(ii) there exist two words p, q ∈ F+ and k, ` ∈ N such that

wi+1wi+2wi+3 = pk and wi+6 = p̂ `

wi+5wi+6wi+7 = qk and wi+2 = q̂ `

where |p| = |q| = g and ` = |wi+2|/g ,

(iii) pwi+1 = wi+1q̂ and q̂wi+3 = wi+3p.

Proof. (i) From Lemma 7, we have that

ŵi−3wi−1 = uivi = ε · vi = vi · ε = viui = wi+1ŵi+3.

Then wi+1 = ŵi−3 = ŵi+5 and wi+3 = ŵi−1 = ŵi+7.
(ii) Using assertion (i), we can write

wi+1wi+3ŵi+6 = wi+1ŵi+7ŵi+6 = wi+1wi+2wi+3

= ŵi+6ŵi+5wi+3 = ŵi+6wi+1wi+3.

Since this equation has the form ab = ba, with a = wi+1wi+3 and b = ŵi+6, we
have from Lothaire [12] that there exists p ∈ F∗ such that

ab = wi+1wi+2wi+3 = ŵi+6ŵi+5wi+3 = pk



with |p| = gcd(|b|, |a|) = g. In particular, wi+6 = p̂ `. To prove that there exists
q ∈ F∗ such that wi+5wi+6wi+7 = qk with |q| = g and that w2 = q̂ `, it suffices
to increase all indices in the precedent proof by four.

(iii) To prove the equality pwi+1 = wi+1q̂, by (ii) we have wi+2 = q̂ ` and
wi+1wi+2 has period g with Prefg(wi+1wi+2) = p and Suffg(wi+1wi+2) = q̂.
Then

pwi+1wi+2 = wi+1wi+2q̂ = wi+1q̂
`+1 = wi+1q̂wi+2.

Comparing the prefixes of length g + |wi+1| on both sides of this equality, we
obtain that pwi+1 = wi+1q̂. The proof that q̂wi+3 = wi+3p is similar to the
previous one. Since wi+2wi+3 has period g with Prefg(wi+2wi+3) = q̂ and
Suffg(wi+2wi+3) = p,

The turning number of an admissible solution S = (wi)i∈[0..7] is naturally
defined from the circular word it defines: Td(S) = Td(w0w1w2w3w4w5w6w7).
Proposition 3 translates directly as follows for admissible solutions.

Lemma 13. Td(S) = ±1 if and only if Fst(wi) = Lst(wi+1) for all i.

Under some conditions, we may guarantee that some admissible solutions do
not yield double squares. More precisely:

Proposition 14. Assume that there exists i ∈ [0..7] such that |wi| + |wi+2| =
|wi+1|+ |wi+3|. Then Td(S) /∈ {−1, 1}.

Proof. Let d = |wi| + |wi+2| = |wi+1| + |wi+1|. We first show that there exists
j ∈ [0..7] such that |wj−1wj | ≥ d and |wjwj+1| ≥ d. Arguing by contradiction,
assume that the contrary holds. This implies that there exists k ∈ [0..7] with
|wk|+ |wk+1| < d and |wk+2|+ |wk+3| < d. Thus,

2d = |wk|+ |wk+1|+ |wk+2|+ |wk+3| < 2d,

which is absurd. Now, we know from Lemma 12 that the words x = wj−2wj−1wj ,
y = wj−1wjwj+1 and z = wjwj+1wj+2 all have period d. Moreover, x has a
suffix of length at least d that is a prefix of y, and y has a suffix of length
at least d that is a prefix of z, so that the period d propagates on the whole
word wj−2wj−1wjwj+1wj+2. First, since |wj−2wj−1wjwj+1| = 2d, we have
Fst(wj−2) = Fst(wj+2). On the other hand, wj+2wj+3 = ŵj−1ŵj−2 im-

plies Fst(wj+2) = Lst(wj−1). To conclude, we proceed again by contradic-
tion. Assume that Td(S) ∈ {−1, 1}. Then Lemma 13 applies. In particular,
Lst(wj−1) = Fst(wj−2). Gathering these three equalities, we obtain

Fst(wj−2) = Fst(wj+2) = Lst(wj−1) = Fst(wj−2),

which is impossible. Hence, Td(S) /∈ {−1, 1}.



3 Reduction of solutions

Let S be the set of admissible solutions. To describe the structure of dou-
ble squares, we consider invertible functions acting on S. Below, we describe
each of them and show their action on double squares. Let S = (wi)i∈[0..7]
be an admissible solution with g = gcd(|w2|, d2), p = Prefg(w1w2w3) and
q = Prefg(w5w6w7). We define the following operators:

shrink(S) = (w0(v0u0)−1, w1, w2, w3, w4(v4u4)−1, w5, w6, w7),

l-shrink(S) = (p−1w0, p
−1w1, w2, w3, q

−1w4, q
−1w5, w6, w7),

r-shrink(S) = (w0q
−1, w1, w2, w3p

−1, w4p
−1, w5, w6, w7q

−1),

swap(S) = (ŵ4, (v1u1)n1v1, ŵ6, (v3u3)n3v3, ŵ0, (v5u5)n5v5, ŵ2, (v7u7)n7v7).

S′
swap(S′)

swap(S)

w0

w1

w2

w3

w4

w5

w6

w7

S

extend1(S)

shrink1(S
′′)

S′′

Figure 7: S′′ = extend1(S) is obtained from S by extending w1 and w5. As for
S′ = swap(S), we have w′0 = ŵ4,w′2 = ŵ6,w′4 = ŵ0 and w′6 = ŵ2.

w7

w0

w1

r-shrink

r-extend

w′
0

w′
7

w1

l-shrink

l-extend

w′
7

w′′
0

w′
1

Figure 8: The operators r-shrink and r-extend modify w7 and w0, while l-shrink
and l-extend modify w0 and w1.

The basic operators shrink, l-shrink,r-shrink and swap are generalized to
act on any wi by using a shift operator. Let shift be the operator defined by

shift(S) = (w1, w2, w3, w4, w5, w6, w7, w0).

It is obvious that shift(S) is admissible. Then for each i ∈ [0..7] and every
ϕ ∈ {swap, shrink, l-shrink,r-shrink}, we define the operator ϕi(S) as

ϕi(S) = shift−i ◦ ϕ ◦ shifti(S).

The reason for shifting back is simply to keep fixed the positions of other factors.
In particular, ϕ0(S) = ϕ(S). With the notation of Lemma 7, we have :



Proposition 15. The following properties hold.

(i) If |wi| > di, then shrinki(S) is admissible.

(ii) If |wi| = di and |wi+1| > g, then l-shrinki(S) is admissible.

(iii) If |wi| = di and |wi+7| > g, then r-shrinki(S) is admissible.

(iv) If ui+1,ui+3,ui+5 and ui+7 are nonempty, then swapi(S) is admissible.

When the conditions described in (i), (ii) or (iii) hold, there must be local
periodicity in the neighborhood of wi (Lemma 8). Consequently, the action of
the operators shrink, l-shrink and r-shrink results in removing an occur-
rence of this period as shown in Figure 7 and 8.

As for swap, these operators are defined from the relations between the
wi’s and the periods ujvj (Lemma 10). The operators shrink, l-shrink and
r-shrink are all invertible (see Section 4 for the definition of the respective
inverses extend, l-extend and r-extend).

Proposition 16. The following properties hold.

(i) If |wi| > di, then |shrinki(S)| < |S|.

(ii) If |wi| = di and |wi+1| > g, then |l-shrinki(S)| < |S|.

(iii) If |wi| = di and |wi+7| > g, then |r-shrinki(S)| < |S|.

(iv) If ui+1,ui+3,ui+5, ui+7 are nonempty then

|vi+1|+ |vi+3| < |ui+1|+ |ui+3 ⇐⇒ |swapi(S)| < |S|.

Lemma 17. The turning number Td is invariant under the operators shift,
shrink, l-shrink, r-shrink and swap.

The cross pentamino : is the smallest non-trivial double square. Up to
conjugacy and reversal, its admissible solution is

b(:) ≡ (0,10,1,21,2,32,3,03).

Before proving Theorem 19, let us define what we mean by reduction of solution.
Let S and S′ be two admissible solutions such that S′ = ϕn ◦ · · · ◦ ϕ2 ◦ ϕ1(S)
where the ϕi’s are operators on solutions. Let Sk = ϕk ◦ ϕk−1 ◦ · · · ◦ ϕ1(S), so
that S0 = S and Sn = S′. Then we say that S reduces to S′ if |Sk| < |Sk−1| for
all k ∈ [1..n].

Proposition 18. Let S be such that Td(S) = ±1. Then S is a composed cross
pentamino or one of shrink, swap, l-shrink or r-shrink reduces S.



Proof. If there is i ∈ {0, 1, 2, 3} such that |wi| > di, then S reduces to shrinki(S).
Also, if there is i such that |ui+1| + |ui+3| > |vi+1| + |vi+3|, then S reduces to
swapi(S). Hence, if neither shrink nor swap can be applied on S, then the
ni’s are necessarily equal to 0 or 1.

The case (n0, n1, n2, n3) = (0, 0, 0, 0) is impossible. Indeed, suppose that we
are in this situation, that is wi = ui for all i. Since swapi(S) does not reduce
S, we know that |ui+1| + |ui+3| ≤ |vi+1| + |vi+3| for all i. Using the equality
|vi| = |wi−1|+ |wi+1|− |ui|, this implies that |ui|+ |ui+2| ≤ |ui+1|+ |ui+3| for all
i ∈ [0..7]. Then we deduce that |u0| + |u2| = |u1| + |u3|. But from Lemma 14,
this implies that Td(S) 6= ±1 which is a contradiction.

If ni = 1, then ui = ε and from Lemma 11, we have that ni+1 = ni+3 =
0. Let g = gcd(|wi+2|, |wi+1| + |wi+3|). We know from Corollary 8 that
wi+1wi+2wi+3 has period g. If ni+2 = 0, we have in particular that |wi+2| <
|wi+1|+|wi+3|. This implies that g < |wi+1| or g < |wi+3|. From Proposition 15,
we have that S reduces to l-shrinki(S) in the first case, and to r-shrinki(S)
in the other one.

Consider now (n0, n1, n2, n3) = (1, 0, 1, 0). In this case the solution has
the form (u1û3, u1, u3u1, u3, û1u3, û1, û3û1, û3), which is a composed cross pen-
tamino under the morphism 0 7→ u1, 1 7→ u3, 2 7→ û1 and 3 7→ û3. The case
(n0, n1, n2, n3) = (0, 1, 0, 1) is similar.

Algorithm 1 Reduction of a double square tile

1: function Reduce(S)
2: Input: a solution S = (w0, w1, w2, w3, w4, w5, w6, w7)
3: Output: an ordered list of operators.
4: L← ()
5: while there is no i s.t. |wi| = di and |wi+2| = di+2 do
6: if there is i such that |wi| > |wi−1|+ |wi+1| then
7: S ← shrinki(S), L← L+ (shrinki)
8: else if there is i such that |ui+1|+ |ui+3| > |vi+1|+ |vi+3| then
9: S ← swapi(S), L← L+ (swapi)

10: else . There is i s.t ni = 1 and ni+1 = ni+2 = ni+3 = 0
11: g ← gcd(|wi−1|+ |wi+1|, |wi+2|)
12: if g < |wi+1| then
13: S ← l-shrinki(S), L← L+ (l-shrinki)
14: else . g < |wi+3|
15: S ← r-shrinki(S), L← L+ (r-shrinki)
16: end if
17: end if
18: end while
19: return L . S corresponds to a composed cross pentamino
20: end function



Theorem 19. Every double square reduces to a composed cross pentamino.

Proof. Let S be the solution of a double square. From Theorem 1, the turning
number of S is ±1. Hence, from Proposition 18, either S is a composed cross
pentamino or S can be reduced by a reduction operator which preserves the
turning number (Lemma 17). Then, Proposition 18 can be applied again. Since
the length of the solution gets strictly smaller at each reduction, Fermat’s infinite
descent principle applies. It follows that the number of iterations is finite and
S reduces to a composed cross pentamino.
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Figure 9: Reduction of a double square tile to the cross pentamino.

Algorithm 1 contains the pseudo code for the Reduction and Figure 9 illus-
trates the execution of the reduction on a double square tile.

4 Generation of solutions

The previous section culminated with Theorem 19 stating that every double
square reduces to a composed cross pentamino. Then, it becomes very natural



to ask whether this leads to an algorithm that generates all double squares
by inverting the reduction operators. In this section, we introduce some new
operators on admissible solutions that are inverses of the reduction operators.
Moreover, we give some relations between these operators and we provide an
algorithm that generates all double squares up to a given perimeter length.

extend0

extend1

extend2

extend3

swap0

swap1

l-extend1

r-extend1

l-extend3

r-extend3

extend0

extend1

swap0swap1

Figure 10: Subtree of the space of admissible solutions generated when starting from
the cross pentamino.

Let S = (wi)i∈[0..7] be an admissible solution. Let g = gcd(|w2|, d2), p =
Prefg(w1w2w3) and q = Prefg(w5w6w7). We define

extend(S) = (w0(v0u0), w1, w2, w3, w4(v4u4), w5, w6, w7),

l-extend(S) = (pw0, pw1, w2, w3, qw4, qw5, w6, w7),

r-extend(S) = (w0q, w1, w2, w3p, w4p, w5, w6, w7q).

Proposition 20. Let S = (wi)i∈[0..7] be an admissible solution and let p, q ∈ F∗
defined as above.

(i) Then extend(S) is admissible.

(ii) If |w0| = d0 then l-extend(S) is admissible.

(iii) If |w0| = d0 then r-extend(S) is admissible.

All our operators are invertible, as shown by the next proposition.



Proposition 21. Let S = (wi)i∈[0..7] be a solution.

(i) shift8(S) = S

(ii) shrink◦extend(S) = S and if |w0| > d0, then extend◦shrink(S) = S.

(iii) If |w0| = d0 then l-shrink ◦ l-extend(S) = S. If in addition |w1| > g,
then l-extend ◦ l-shrink(S) = S.

(iv) If |w0| = d0 then r-shrink ◦ r-extend(S) = S. If in addition |w7| > g,
then r-extend ◦ r-shrink(S) = S.

(v) If ui+1, ui+3, ui+5 and ui+7 are nonempty, then swap2
i (S) = S.

In order to provide a more efficient generation algorithm, it is worth men-
tioning that the operators extend, swap, l-extend and r-extend satisfy
commuting properties (see Figure 11).

extend0

extend2

extend2 swap1

swap1

extend0

Figure 11: Two distinct ways of generating the same double square tile. The diagram
commutes in virtue of Proposition 22(iii) and (iv).

Proposition 22. Let ϕ ∈ {extend, swap, l-extend,r-extend} and i ∈ Z8.

(i) ϕi = ϕi+4;

(ii) swapi = swapi+2;

(iii) extendi+2 ◦ extendi = extendi ◦ extendi+2;

(iv) extendi+1 ◦ swapi = swapi ◦ extendi+1;

(v) l-extendi ◦ r-extendi = r-extendi ◦ l-extendi.

Based on the preceding results, Algorithm 2 allows to generate all double
squares of perimeter at most n. Notice that it may be improved significantly
by using Proposition 22. More precisely, it is possible to avoid exploring all
paths involving commuting operators by choosing precedence on the operators.
For instance, we could avoid using the operator extend2 if the last applied
operator is either extend0 or swap1, i.e. these two last operators would pre-
cede extend2. We also believe that some operators might be superfluous, as



discussed in the last section. Figure 10 illustrates a partial trace of Algorithm 2
when starting with the cross pentamino.

It is not clear what is the complexity of Algorithm 2. Indeed, except for some
conjectures that we state in the last section, we do not know exactly how many
admissible solutions yield double squares. On the other hand, our algorithm is
clearly more effective than the naive strategy of enumerating all words of length
n on F and check if it describes a double square tile. A fine analysis of Lines
5 and 8 of Algorithm 2 would be also useful. Finally, it would not be hard to
enumerate double squares according to perimeter length: it suffices to make Q
a priority heap.

Algorithm 2 Generation of double squares

1: function Generate(n)
2: Input: n, the maximum perimeter of the generated double squares.
3: Output: the set of all double squares of perimeter at most n.
4: T ← ∅
5: Q← {P : P is a composed cross pentamino of size at most n}
6: while Q 6= ∅ do
7: t← Pop(Q)
8: if t is a polyomino then T ← T ∪ { t }
9: C ← {extendi(t) : i = 0, 1, 2, 3}

10: C ← C ∪ {swapi(t) : i = 0, 1}
11: C ← C ∪ {l-extendi(t) : i = 0, 1, 2, 3 and |wi| = di}
12: C ← C ∪ {r-extendi(t) : i = 0, 1, 2, 3 and |wi| = di}
13: . C contains all tiles that may be generated from t
14: Q← Q ∪ {c ∈ C : |t| < |c| ≤ n}
15: end while
16: return T . T contains all tiles of size at most n
17: end function

5 Concluding remarks and open problems

Although we have described an algorithm to generate double squares, there are
still some improvements that remain to be done. For instance, we observed
that all admissible solutions whose generation use at least one operator among
r-shrink and l-shrink are always self-crossing. Hence, we conjecture that only
two of the reduction operators suffice for reducing any double square, so that
only the operators extend and swap would be needed for generation purposes.

Conjecture 23. Let S be an admissible solution coding a double square. Then

(i) S is a composed cross pentamino or

(ii) shrinki(S) is a double square smaller than S or

(iii) swapi(S) is a double square smaller than S.



Moreover, it was conjectured in [13] that, given a prime double square and its
admissible solution S, the factor wiwi+1 is a palindrome for all i ∈ Z8. Although
we do not solve that problem here, we obtain a result strongly suggesting that
this property holds:

Proposition 24. Let w ≡ ABÂB̂ ≡ XY X̂Ŷ be the boundary of a double
square. If w reduces to the prime cross pentamino, then A, B, X and Y are
palindromes.

As a last remark, we conjecture that the operators extend and swap pre-
serve primality. More precisely:

Conjecture 25. Let D be a double square tile. If D is prime, then D reduces
to the prime cross pentamino.
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