
Introduction

Figure 1: Maurits Cornelis Escher (1898-1972)

In the late 30’s, Maurits Cornelis Escher astonished the
artistic world by producing some puzzling drawings. In
particular, the tesselations of the plane obtained by us-
ing a single tile appear to be a major concern in his
work, drawing attention from the mathematical com-
munity. Since then, tesselations of the plane have been
widely studied: see Grünbaum and Shephard (1987) for
a general presentation.

Among the many types Escher discovered, the
simplest one concerns tilings obtained with trans-
lated copies of a single tile: hexagonal (right) and
square (below) tilings appeared in numerous of
its drawings and prints. Immediately, two natural
questions arise:

1. How can we recognize a tile?

2. How can we generate tiles?
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Figure 2: An hexagonal Tiling.

Figure 3: A square Tiling.

Of course, when dealing with boundaries described by
continuous functions, it is necessary to represent them
conveniently. As quoted on Doron’s website :

Cauchy ruined mathematics. Let’s throw out all
that epsilon-delta nonsense.

—–Adriano Garsia,

talk at the Journées Pierre Leroux, Montreal, Sept. 8, 2006.

So that a good way to deal with tiles is to use polyomi-
noes, whose boundary is conveniently encoded on the
four letter alphabet Σ = {0,1,2,3}.

Figure 4: TILINGS OF R2. The general problem of deciding whether a given region tile the Euclidean plane R2 is
of great interest when studying tilings and cristal networks problems. The region R illustrated above has a continuous
boundary that may be factorized in four paths that are pairwise parallel, so that it tiles the plane by translation.

Now by using tools from combinatorics on words, it is possible to tackle these problems. For this
purpose, let us quote the following characterization:

Theorem 1 (Beauquier-Nivat,1991). A polyomino P tiles the plane by translation if and only if there
exist A,B,C ∈ Σ∗ such that

W ≡ A ·B ·C · Â · B̂ ·Ĉ,

where W is some boundary word of P and at most one of the variables A, B, C is empty.

Recognition of tiles Efficient algorithms have been designed:

Square tiles: a linear optimal algorithm (B. and Provençal, 2006).

Hexagonal tiles: if the polyominoes do not have too long square factors then the algorithm is still
linear (B. and P., 2008). A general O(n log3(n)) algorithm also appears in Provençal’s thesis (2008).

Conjecture: a linear algorithm exists.

Multiple tilings

Figure 5: DISTINCT TILINGS. For any positive integer n, there exist polyominoes yielding n distinct hexagonal tilings.

Polyominoes may have both square and hexagonal factorizations. In Figure 5 (top), the 4×1 rectan-
gle has three distinct hexagonal tilings. It also has one square tiling. More generally, the (n+1)×1
rectangle yields n hexagonal tilings. Moreover, a hexagonal tile may have at most 1 square tiling.

Figure 5 (bottom) shows a tile admitting two distinct square tilings. And in fact all tiles admit at
most two square tilings, that is either 0, 1 or 2 distinct ones:

Theorem 2. The number of distinct BN-factorizations of a square is at most 2.

Tiles having exactly two square factorizations define two sets of distinct translations and are called
double squares.

On the right, one of the two tesselations
of a double square. The second one is
obtained by taking the (vertical) mirror
image.

There are infinite families of such double squares, and in particular, two remarkable families of
squares are linked to the Christoffel words and to the Fibonacci sequence.

Christoffel tiles

Consider the morphism λ : {0,1,2,3}∗→{0,1,2,3}∗ by λ (0) = 0301 and λ (1) = 01, which can be
seen as a “crenelation” of the steps east and north-east.

(a)

(0,0)

(5,3)

w = 00100101

(b) λ (w)ρ2(λ (w))

Figure 6: CHRISTOFFEL TILES. An infinite family of double squares are the so-called Christoffel tiles. They are
crenellated versions of discrete segments. Indeed, Christoffel tiles are exactly given by λ (ww), where w is any Christoffel
word, up to rotations and reflections on Z2.
(a) The Christoffel word of parameters (5,3). (b) Its associated Christoffel tile.

Fibonacci tiles

Figure 7: FIBONACCI TILES. Another remarkable family of double-squares are the Fibonacci tiles. Above are listed
those of order n = 0,1,2,3,4.

Figure 8: FIBONACCI TILING. Tilings of the Fibonacci Tile of order 2 illustrate that it is a double square tile.

169

P3 = 5

P4 = 12
P6 = 169 = 52+122

Figure 9: A LINK WITH THE PELL NUMBERS. Fibonacci tiles are related both to the Fibonacci sequence and the Pell
numbers, i.e. they contain both the golden and silver ratios.

More precisely, the area of the Fibonacci tiles is described by the subsequence of odd indexed Pell
numbers 0,1,2,5,12,29,70,169,408,985,2378,5741,13860,33461,80782, . . ., defined by P0 = 0,
P1 = 1, Pn = 2Pn−1+Pn−2, for n > 1. They are known to satisfy the identity P2

n +P2
n+1 = P2n+1.

Enumeration and generation of double squares
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Figure 10: DOUBLE SQUARES. The problem of characterizing the double squares has been studied in Blondin Massé et
al. (2010), where it is shown that every double square reduces to a morphic pentamino cross by mean of three operators
of reduction acting on possibly self-intersecting double squares.

Combinatorial aspects of Escher tilings
S. Brlek1, A. Blondin Massé12 and S. Labbé13.
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