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Abstract

In this paper we consider several types of equations on words, motivated by the attempt
of characterizing the class of polyominoes that tile the plane by translation in two distinct
ways. Words coding the boundary of these polyominoes satisfy an equation whose solutions
are in bijection with a subset of the solutions of equations of the formABÃB̃≡ XYX̃Ỹ . It
turns out that the solutions are strongly related to local periodicity involving palindromes
and conjugate words.
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1 Introduction

A large part of combinatorics on words concerns the study of regularities and equa-
tions involving them. By describing their combinatorial properties, one is often led
to structures that are useful for obtaining faster algorithms for several decidable
problems. Their relevance is justified by numerous applications, among which the
widely studied pattern matching in strings and more recently the advances in the
genoma sequence analysis provided a broad range of algorithms. In addition the
combinatorial properties often provide complexity boundsfor both the space rep-
resentation of objects and the execution time of the algorithms.

Let us give some examples. The well-known “lemma of three squares” [13] states
that the equationx2 = y2v = z2uv, wherez is primitive, implies a condition on the
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length of z, namely that|z| < |x|/2. In other words, it shows that such patterns
are rather constrained instead of being freely organized. In turn this result is used
for providing upper bounds on the number of squares leading to tighter bounds
on square detection algorithms. The problem of overlappingpalindromes appears
in number theory, when trying to superpose Christoffel words [14] or Beatty se-
quences [16,17]. Indeed, a Christoffel word is characterized by a central palin-
drome. Motivations for the study of palindromic complexityemerge from many
areas among which the study of Schrödinger operators in physics [3,10], number
theory [2], discrete geometry [8], and combinatorics on words where it appears as
a powerful tool for understanding the local structure of words. It has been recently
studied in various classes of infinite words, a partial account of which may be found
in the survey provided by Allouche et al. [1]. Another example stems from discrete
geometry on square lattices, where polyominoes are conveniently represented by
words on the 4-letter alphabetE = {a,b,a,b}. A nice application is the detection
of digital convexity. Indeed, one needs a combination of thecomputation of the
Lyndon factorization followed by checking if all factors are Christoffel words, that
is palindrome words extended by a letter at each end and satisfying an arithmetical
condition [8].

In this paper, we study equations that yield periodic words.In the preliminary Sec-
tion 2 we state some useful lemmas, where the key argument forobtaining periodic-
ity is conjugacy. Then, in Section 3 we consider systems of two equations and show
how palindromes propagate in a word. We provide a direct and much simpler proof
of a result obtained by Labbé [11], based on a simple but efficient property (Lemma
7). By considering equations involving three palindromes,we obtain results in the
spirit of the three squares lemma, which may be seen as extending the results of
Paquin [14] for Christoffel words. More precisely, given three fixed palindromes in
some overlapping configuration, the relative distances between each pair are con-
strained in order to apply Fine and Wilf’s theorem and obtainperiodicity. Finally,
we consider equations of typeABÃB̃≡ XYX̃Ỹ on circular words, which are linked
with the representation of a tile yielding tesselations of the plane with translated
copies of it. Again, constraints on the way these factors overlap yield periodicity,
leading to the discovery of an infinite class of polyominoes (calleddouble squares
in [15]) that tile the plane by translation in two distinct ways as depicted below.

Fig. 1. A double square and its two associated tilings.
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2 Preliminaries

All the basic terminology about words is taken from M. Lothaire [12]. In what
follows, Σ is a finitealphabetwhose elements are calledletters. By word we mean
a finite sequence of lettersw : [0..n−1] −→ Σ, wheren ∈ N. The length ofw is
|w| = n andw[i] or wi denote itsi-th letter. The set ofn-length words overΣ is
denotedΣn. By convention, theemptyword is denotedε and its length is 0. The
free monoid generated byΣ is defined byΣ∗ =

S

n≥0 Σn. The set of right infinite
words is denoted byΣω and we setΣ∞ = Σ∗∪Σω. Given a wordw∈ Σ∞, a factor
u of w is a wordu ∈ Σ∗ such thatw = xuy, with x ∈ Σ∗ and y ∈ Σ∞. If x = ε
(resp.y = ε ) then u is calledprefix (resp.suffix). If w = xu, with |w| = n and
|x| = k, thenx−1w = w[k..n− 1] = u is the word obtained by erasing fromw its
prefix x. The set of all factors ofw is denoted by Fact(w), those of lengthn is
Factn(w) = Fact(w)∩Σn, and Pref(w) is the set of all prefixes ofw. The number of
occurrences of a factoru∈ Σ∗ is |w|u. A periodof a wordw is an integerp < |w|
such thatw[i] = w[i + p], for all i < |w|− p. If p is a period ofw, thenw is periodic
with periodp. An important result about periods is due to Fine and Wilf.

Theorem 1 (Fine et Wilf) Let w be a word having p and q for periods. If|w| ≥
p+q−gcd(p,q), thengcd(p,q) is also a period of w.

A word is said to beprimitive if it is not a power of another word. Two wordsu
andv areconjugate, writtenu≡ v, when there are wordsx,y such thatu = xy and
v = yx. Moreover, we say thatu is conjugate to v with delay|x|.

Lemma 2 If u is conjugate to v with delay d1 and v is conjugate to w with delay
d2, then u is conjugate to w with delay d1+d2 mod |u|.

Periodicity is related to conjugacy as the next propositions show.

Proposition 3 If w = ABC=CBA, then|AB|, |CB| andgcd(|AB|, |CB|) are periods
of w.

Proof.By hypothesis, we have

AB·CB= ABC·B = CBA·B= CB·AB

which is of the formxy = yx, and therefore there exist a wordp, and two inte-
gers i and j such thatx = pi et y = p j ([12], Prop. 1.3.2). HenceAB = pi and
BC = p j . It follows that |p| divides both|AB| and |BC|, so that|p| also divides
gcd(|AB|, |CB|). 2

Observe that ifA = ε in the proposition above, thenw is conjugate to itself with
delayd = |B|, so that gcd(d, |w|) is a period ofw. Moreover, the statement above
may be refined to take into account the fact that|p| is a period ofw. In fact a
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more general result holds. Indeed, letσ : {A,B,C} −→ {A,B,C} be a bijection (or
permutation). Then we have the following property showing that if the factorsA,B
andC have two occurrences inw = ABC then periodicity appears.

Proposition 4 Let w= ABC= σ(A) ·σ(B) ·σ(C), whereσ 6= Id. If A, B and C6= ε,
then the following conditions hold

(i) if σ is cyclic then there exist p∈ Σ∗ and k> 1∈ N such that ABC= pk;
(ii) otherwise, either ABC or AB or BC is periodic.

Proof. (i) In this case we have eitherABC= BCAor ABC= CAB. In both cases, it
is an equation of the formxy= yx, so that Proposition 3 applies.

(ii) ABC= CBAimplies the first result, whileAB·C = BA·C implies the second
andA ·BC= A ·CB the third. 2

Thereversalof u= u0u1 · · ·un−1 ∈ Σn is the wordũ = un−1un−2 · · ·u0, and apalin-
dromeis a wordp such thatp = p̃. For a languageL ⊆ Σ∞, the set of the palin-
dromic factors of its elements is denoted by Pal(L). Every word contains palin-
dromes, the letters andε being necessarily part of them. This justifies the introduc-
tion of the function LPS(w) which associates to any wordw its longest palindromic
suffix. We recall from [5] a useful combinatorial property.

Proposition 5 (Blondin Massé et al. [5])Assume that w= xy = yz with |y| 6= 0.
Then for some u,v, and some i≥ 0 we have from[12]

x = uv,y = (uv)iu,z= vu; (1)

and the following conditions are equivalent :

(i) x = z̃;
(ii) u and v are palindromes;

(iii) w is a palindrome;
(iv) xyz is a palindrome.

Moreover, if one of the equivalent conditions above holds then

(v) y is a palindrome.

An interesting consequence is the following result.

Corollary 6 (Blondin Massé et al. [7])Assume that w= xp = qz where p and q
are palindromes such that|q|> |x|. Then w has period|x|+ |z|, and x̃z is a product
of two palindromes.

This basic property is best possible. Indeed, it says that when two distinct palin-
dromes overlap, even for one letter, then a period appears inthe word.
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3 Equations involving palindromes

A very special case of this problem already appears in the literature. Indeed, Christof-
fel words (finite Sturmian words) have the property that the central word is a palin-
drome, and their superposition is possible under some arithmetic constraints. For
more details see for instance Simpson [16,17] or more recently Paquin [14]. The
following results are excerpts of the last author Master thesis [11]. The presentation
given here is much simpler and is based on the following very useful lemma, which
may be considered as a special case of Proposition 5. It is however independent
since it does not rely on periodicity.

Lemma 7 Let w= ỹp= qy where p,q∈ Pal(Σ). Then w∈ Pal(Σ).

Proof.We have two cases to consider according to the length ofy. If |y| ≥ |p| then
q = p̃ andw = p̃spwheres is the intersection of̃y andy. Sinces is a palindrome
the result follows. If|y| < |p|, we can writeq = ỹq1 and p = p1y. Thenỹp= qy
implies ỹp1y = ỹq1y andq1 = p1. On the other hand, taking the reversal ofw we
havepy= ỹq. Substitutingp = p1y andq = ỹq1, we havep1 · yy= ỹỹq1 = ỹỹ · p1,
which implies thatw∈ Pal(Σ) by Prop. 5 (i),(iii). 2

Proposition 8 Let x,y, p,s∈ Σ∗ with |p|+ |s| > 0, and let v,w∈ Pal(Σ). Then the
following conditions hold :

(i) if xs= pv andx̃s= pw, then x is a palindrome;
(ii) if xs= py andx̃s= pỹ, then x and y are palindrome;

(iii) if sx= vp and s̃x = wp, then x is a palindrome.

Proof.(i) We write s̃xs= s̃· pv= wp̃ ·s. Then Lemma 7 applies withy = p̃sso that
s̃xsis a palindrome, andx as well.
(ii) We write s̃xs= s̃· py= yp̃ ·s. If |y|> 0, since this equality as the formuy= yũ
with u = s̃p, by Proposition 5 (i) and (iii)̃sxsis a palindrome and so isx. If |y|= ε,
thenxs= p = x̃sandx is a palindrome.
(iii) Taking the reversal of the equations, we obtain from (i) the result. 2

Corollary 9 Let x,y, p,s∈ Σ∗, where with|p| 6= |s|, and v,w ∈ Pal(Σ). Then the
following conditions hold :

(i) if sx= pv and s̃x = pw, then x is a palindrome;
(ii) if sx= py and s̃x = pỹ, then x is a palindrome and y is a palindrome.

Proof. (i) If |p| > |s|, then there existsp′ 6= ε such thatx = p′v andx̃ = p′w. From
Proposition 8 (i), we conclude thatx is a palindrome. If|p| < |s|, then there exists
s′ 6= ε such thats′x = v ands′x̃ = w andx is a palindrome from Proposition 8(iii).
(ii) If |p| > |s|, then there existsp′ 6= ε such thatx = p′y and x̃ = p′ỹ. The result
follows from Lemma 8(ii). If|p|< |s|, then there existss′ 6= ε such thats′x= y and
s′x̃ = ỹ. The result follows from Proposition 8(ii).2
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We consider now the relative position of three palindromes in a word, and start with
a property inducing periodicity in overlapping palindromes.

Proposition 10 Let w= pxu= yqu= yvr where p,q and r are palindromes and
|q|> |x| and |q|> |v|. Let a= |x|+ |y| and b= |u|+ |v|. If |q| ≥ a+b−gcd(a,b),
thengcd(a,b) is a period of w.

Proof.The relative positions ofp,q andr is as follows.

p x
y q u

v r

Applying Corollary 6 to the equationspx = yq andqu= vr, we obtain thatyq is
periodic with perioda= |x|+ |y| and thatyq is periodic with periodb= |u|+ |v|. In
particular,q has both periods. Since|q| ≥ a+b−gcd(a,b), then the Fine and Wilf’s
theorem tells us thatq has period gcd(a,b) too. Finally, since|q| ≥ a+b−gcd(a,b)
implies that|q| ≥ a and |q| ≥ b, thenyq andqu both have period gcd(a,b) and
w = yqu is periodic with period gcd(a,b). 2

As a direct consequence of this Proposition, we know a littlebit more whenq and
r are the longest palindromic suffixes.

Corollary 11 If q = LPS(px) or r = LPS(qu), with |x|> 0 and|v|> 0. Then|q| ≥
a+b−1, implies thatgcd(a,b) 6= 1.

Proof.If gcd(a,b) = 1, thenw= α|w| by Proposition 10. Therefore LPS(qu) = vr 6=
r since|v|> 0, a contradiction. 2

The next proposition is similar but deals with another configuration.

Proposition 12 Let w= pxu= yvqu= yr where p, q and r are palindromes such
that |q|> |x| and |r|> |xu|. Let a= |x|+ |y|+ |u| and b= |y|+ |v|+ |x|. If |yvq|>
a+b−gcd(a,b), thengcd(a,b) is a period of w.

Proof.The relative positions ofp,q andr is depicted below.

p x

v q uy

r

Applying Corollary 6 to the equationsw = pxu= yr andpx= yvq, we obtain that
w is periodic with perioda andyvq is periodic with periodb. If |yvq| > a+ b−
gcd(a,b), then from Fine and Wilf’s theorem, we obtain that gcd(a,b) is a period
of yvq. Finally, since|yvq|> a, the period gcd(a,b) can be extended over allw and
the result follows. 2
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4 Equations on circular words

Words may overlap in many ways depending on their relative positions, and to deal
with all the possible configurations we need a convenient relation. Letu,v∈ Σ∗ and
d ∈ Z, we say thatu overlaps v with delay dif

−|v|< d < |u|

and if there exists, t ∈ Σ∗ such thatd = |s| − |t| andtu andsvare comparable for
the prefix order. In the pictures below,u overlapsv with delayd = |s|− |t| positive
in both (a) and (b) and negative in both (c) and (d).

(a)
u

d
v

(b)
u

d
v

(c)

d
u

v

(d)

d
u

v

t u

s v

t u

s v

t u

s v

t u

s v

Examples. The wordcheval overlapschevaletwith delay 0. The wordchevalet
overlapsvalet with delay 3. The wordsuperduper overlapsup with delay{1,6}.

The relationR = {(u,v,d)∈ Σ∗×Σ∗×Z | u overlapsv with delayd} satifies some
properties that are easy to verify (see [11]). If(u,v,d) ∈ R and(u,v,d′) ∈ R with
d 6= d′, we will abuse the notation and simply write(u,v,{d,d′})∈R . For instance,
the wordperdu overlapssuperduper with delay{−2,−7}.

Lemma 13 [11](4.2) Let u, v∈ Σ∗ and d∈ Z. Then the following conditions are
equivalent:

(i) (u,v,d) ∈ R ;
(ii) (v,u,−d) ∈ R ;

(iii) (ũ, ṽ, |u|− |v|−d) ∈ R
(iv) (ṽ, ũ, |v|− |u|+d) ∈ R

Lemma 14 Let u, v, w, z∈ Σ∗ and d∈ Z such that(uv,wz,d) ∈ R . Then:

(i) (uv,w,d) ∈ R ;
(ii) (u,wz,d) ∈ R if d < |u|;

(iii) (v,wz,d−|u|) ∈ R if −|w|< d−|u|.

Lemma 15 Let u, v, w∈ Σ∗ and d1, d2 ∈ Z such that(u,v,d1) ∈ R and(v,w,d2) ∈
R . If d1d2≥ 0 and|d1+d2|< |u|, then(u,w,d1+d2) ∈ R .
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An immediate consequence of Lemmas 2 and 14 follows.

Lemma 16 Let u,v,w,x,y,z∈ Σ∗ be such that|u| = |v|. Suppose that uy is conju-
gate to vx with delay d1 and vw is conjugate to uz with delay d2. If d1d2 > 0 and
d1+d2 < |u|, then d1+d2 is a period of both u and v.

Proposition 17 Let u,v,x,y∈Σ∗, and k,ℓ, n∈Z such that|u|= |v|= k, |x|= |y|= ℓ
and n= k+ ℓ. Suppose that uy is conjugate to vx with delay d1 and that ṽy is
conjugate to ũx with delay d2. Let d= d1+d2. Then we have:

(i) if d < k, then d is a period of u and v;
(ii) if 2n−d < k, then2n−d is a period of u and v;

(iii) if d < ℓ, then d is a period of x and y;
(iv) if 2n−d < ℓ, then2n−d is a period of x and y.

Proof. (i) Follows directly from Lemma 16. (ii) Follows from Lemma 16, since
vx is conjugate touy with delayn−d1 andux̃ is conjugate tovỹ with delayn−
d2. Similarly, (iii) and (iv) both follow from Lemma 16 sinceyu is conjugate to
xv with delay d1 from Lemma 2 andxũ is conjugate toyṽ with delay d2 from
Lemma 13. 2

Now, we consider equations of typeABÃB̃≡XYX̃Ỹ , or equivalently, wordsw∈ Σ∗
satisfying the following properties:

(i) w = ABÃB̃, with A,B∈ Σ∗
(ii) wp= pXYX̃Ỹ or sw= XYX̃Ỹ s

wherep ands are respectively a prefix and a suffix ofw. Without loss of general-
ity, the casesw= XYX̃Ỹ smay be dropped since it amounts to a renaming of the
variables. An example of the situationwp= pXYX̃Ỹ is depicted in Figure 2.

A B Ã B̃

X Y X̃ Ỹ

d1
←→

d2
←→

d1
←→

d2
←→

d1
←→

p

p

Fig. 2. EquationABÃB̃≡ XYX̃Ỹ.

Let d1 be the delay betweenA andX, andd2 the one betweenB andY. We will
suppose in addition that|A|> |d1| ≥ 0 and|B|> |d2| ≥ 0. Clearly, the overlapping
of ABÃB̃ and XYX̃Ỹ is completely determined byA, B, |X| and d1. Indeed, by
construction, the delayd2 betweenB andY is defined byd2 = d1 + |X| − |A| and
|Y| = |A|+ |B| − |X| since|AB| = |XY|. We are interested in the particular cases
whered1d2 ≥ 0. Without loss of generality, we may restrict our study to the case
d1,d2 ≥ 0, since the cased1,d2 ≤ 0 is obtained from the first one by taking the
mirror image of the equationABÃB̃≡ XYX̃Ỹ . The overall situation is completely
described by the following set of eight overlapping relations:
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(R)

(a) (A,X,d1) ∈ R and(Ã, X̃,d1) ∈ R ,

(b) (X,B, |X|−d2) ∈ R and(X̃, B̃, |X|−d2) ∈ R ,

(c) (B,Y,d2) ∈ R and(B̃, Ỹ ,d2) ∈ R ,

(d) (Y, Ã, |Y|−d1) ∈ R and(Ỹ ,A, |Y|−d1) ∈ R .

For practical reasons, it is convenient to work with this decomposition instead of
the general equationABÃB̃≡ XYX̃Ỹ . We setδ = d1 +d2 and start with a general
result on periodicity ofA, B, X andY.

Proposition 18 If the length of A (resp. B, X, Y) is strictly greater thanδ then A
(resp. B, X, Y) has periodδ.

Proof. First, note that we have|X| = |A|+ d2− d1. By the overlapping relations
decomposition,(A,X,d1) ∈ R and(Ã, X̃,d1) ∈ R . By Lemma 13,

(Ã, X̃,d1) ∈ R ⇐⇒ (X,A, |X|− |A|+d1) ∈ R ⇐⇒ (X,A,d2) ∈ R .

Then by Lemma 15,δ = d1 + d2 is a period ofA if |A| > δ and a period ofX if
|X|> δ. The argument is exactly the same forB andY. 2

Now, letA1, A2 be the prefix and the suffix ofA of lengthd1 andB1, B2 be the prefix
and the suffix ofB of lengthd2, that is

A = A1u = vA2, and B = B1s= tB2.

Observe that with those notations, we can writeX andY as

Y = Ã1u′ = v′Ã2 and X = B2s′ = t ′B1,

as shown in Figure 3.

A
A1 A2

B
B1 B2

Ã
Ã2 Ã1

B̃
B̃2 B̃1 A1

X

B2 B1

Y
Ã1 Ã2

X̃

B̃1 B̃2

Ỹ

A2 A1

Fig. 3. Finer factorization ofABÃB̃

Recall that the fractional power of a wordw∈ Σ∗ is defined aswr = w⌊r⌋p wherer
is a rational such thatr|w| ∈N andp is the prefix ofw of length(r−⌊r⌋)|w|. Then
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using Proposition 18, we can write

A = (A1B2)
|A|
δ and Ã = (Ã2B̃1)

|A|
δ ;

B = (B1Ã1)
|B|
δ and B̃ = (B̃2A2)

|B|
δ ;

X = (B2A1)
|X|
δ and X̃ = (B̃1Ã2)

|X|
δ ;

Y = (Ã1B1)
|Y|
δ and B̃ = (A2B̃2)

|Y|
δ ;

to obtain the following proposition.

Proposition 19 Let A, B, X, Y∈ Σ∗, such that AB̃AB̃≡ XYX̃Ỹ . Let A1, A2, B1 and
B2 be as above. Let d1 = |A1| = |A2|, d2 = |B1| = |B2| and δ = d1 + d2. Then the
following properties hold:

(i) if |A| ≥ δ, then A1B2 is conjuguate to A2B1 with delay|A|+d2 modδ,
(ii) if |B| ≥ δ, then A2B̃2 is conjuguate to A1B̃1 with delay|B|+d1 modδ.

Proof. (i) Suppose that|A| ≡ k modδ. SinceA = (A1B2)
|A|
δ , Ã = (Ã2B̃1)

|A|
δ and

|A| ≥ δ, thenA1B2 is conjugate toB1A2 with delayk. We also have thatB1A2 is
conjuguate toA2B1 with delayd2. Then by Lemma 2, we conclude thatA1B2 is
conjuguate toA2B1 with delay(k+d2) modδ = (|A|+d2) modδ.

(ii) Suppose that|B| ≡ l modδ. SinceB = (B1Ã1)
|B|
δ , B̃ = (B̃2A2)

|B|
δ and|B| ≥ δ,

thenB1Ã1 is conjuguate tõA2B2 with delay l . Since|A2| = d1, we also have that
Ã2B2 is conjuguate toB2Ã2 with delayd1. By Lemma 2, we obtain thatB1Ã1 is
conjuguate toB2Ã2 with delay (l + d1) modδ. Finally, applying Lemma 13, we
conclude thatA2B̃2 is conjuguate toA1B̃1 with delay(l + d1) modδ = (|A|+ d1)
modδ. 2

Several results follow from this proposition since it makesthe conditions of Propo-
sition 17 satisfied. Due to lack of space we only mention some of them, that we
used in connection with the problem of determining a class oftilings of the plane.

Corollary 20 If |A|+ d2 ≡ 0 modδ or |B|+ d1 ≡ 0 modδ, then A1 = A2 and
B1 = B2.

Corollary 21 If |A|, |B| ≥ δ, |A|+ d2 ≡ 0 modδ and |B|+ d1 ≡ 1 modδ, then
ABÃB̃≡ XYX̃Ỹ = αn.

Corollary 22 Assume that d1 = d2 = d, i.e.|A|= |B|= |X|= |Y| = ℓ andδ = 2d.
Let ℓ ≥ δ and ℓ ≡ n modδ. If 2|d− n| ≤ d then A1, A2, B1 and B2 have period
2|d−n|.

Characterization of double squares.A polyominoP is represented by a wordb(P)
on the 4-letter alphabetE = {a,b, ā, b̄} encoding its contour. There is a natural in-
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volution defined onE , by · : a 7→ ā;b 7→ b̄, consisting in swapping the elementary
directions. The composition̂· = · ◦ ·̃ is an antimorphism interpreted as follows:
if w ∈ E∗ is a path, then̂w is the same path traversed in the opposite direction.
Deciding if a polyominoP tiles the plane by translation amounts to check if the cir-
cular wordb(P) can be factorized asb(P)≡ ABCÂB̂Ĉ, where at most one variable
is empty [4].P is called asquareif one variable is empty, otherwise it is called an
hexagon. Moreover, although some polyominoes admitO(|b(P)|) distinct hexagon
factorizations, it has been conjectured in [15] that squares admit at most two dis-
tinct factorizations. Squares having exactly two distinctfactorizations yield distinct
tilings as illustrated in Figure 1.

All results of Section 4 obtained from equations of typeABÃB̃≡ XYX̃Ỹ , are also
valid for equations of the formABÂB̂≡XYX̂Ŷ by replacing̃· with ·̂ everywhere.
Since the problem of characterizing double squares requires solving equations of
this last form, it provides additional constraints for finding them. For instance, it has
been conjectured in [15] that the boundary of prime double squares always satisfies
the equation

ABÂB̂≡ XYX̂Ŷ , for A,B,X,Y ∈ Pal(E∗). (2)
In this specific case, by combining the palindromic conditions with the ·̂ version
of Propostion 19, we obtain the following proposition:

Proposition 23 Assume that|A|, |B|, |X| and |Y| are greater thanδ and let k=
|A|+d2 modδ, l = |B|+d1 modδ. Then k+ l 6= d1+d2.

Incidentally, an interesting first step in tackling the general problem is to describe
all polyominoes whose boundary words satisfy Equation (2).If we fix |A|= |B|=
|X| = |Y| = 43, and consider all possible delaysd such that 1≤ d ≤ 42 in Equa-
tion (2), then prime double squares are obtained only when

d = 1,2,4,5,6,9,14,17,26,29,34,37,38,39,41,42.

Also, note that each double square obtained with delayd is isometric to the one
obtained with delay 43− d. The eight polyominoes in question are illustrated in
Figure 4. A description of two infinite families of double squares can be found in
[6].

Fig. 4. Prime double squares with|A|= |B|= |X|= |Y|= 43.
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