Palindromes and local periodicity *

A. Blondin Mas#, S. Brlek*, A. Garon, S. Labé

Laboratoire de Combinatoire et d’'Informatique Méthatique,
Universigé du Quebeca Montréal,
C. P. 8888 Succursale “Centre-Ville”, Mor#éal (QC), CANADA H3C 3P8

Abstract

In this paper we consider several types of equations on wondsivated by the attempt
of characterizing the class of polyominoes that tile theaglhy translation in two distinct
ways. Words coding the boundary of these polyominoes gatiséquation whose solutions
are in bijection with a subset of the solutions of equatiohlsheformABﬂﬁz XYXY . It
turns out that the solutions are strongly related to locabgeity involving palindromes
and conjugate words.
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1 Introduction

A large part of combinatorics on words concerns the studggdiarities and equa-
tions involving them. By describing their combinatoriabperties, one is often led
to structures that are useful for obtaining faster algargHor several decidable
problems. Their relevance is justified by numerous apptioat among which the
widely studied pattern matching in strings and more regethié advances in the
genoma sequence analysis provided a broad range of algariih addition the

combinatorial properties often provide complexity boufatsboth the space rep-
resentation of objects and the execution time of the aligst

Let us give some examples. The well-known “lemma of threeasegi [13] states
that the equation? = y2v = Z2uv, wherez is primitive, implies a condition on the
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length ofz, namely thatz| < |x|/2. In other words, it shows that such patterns
are rather constrained instead of being freely organizeturh this result is used
for providing upper bounds on the number of squares leadirtgghter bounds
on square detection algorithms. The problem of overlappelgndromes appears
in number theory, when trying to superpose Christoffel vgdit¥] or Beatty se-
guences [16,17]. Indeed, a Christoffel word is characteriy a central palin-
drome. Motivations for the study of palindromic complexégnerge from many
areas among which the study of Schrodinger operators isiphy3,10], number
theory [2], discrete geometry [8], and combinatorics ondgowhere it appears as
a powerful tool for understanding the local structure of gt has been recently
studied in various classes of infinite words, a partial antofiwhich may be found
in the survey provided by Allouche et al. [1]. Another examglems from discrete
geometry on square lattices, where polyominoes are coentyirepresented by
words on the 4-letter alphab#t = {a,b,a b}. A nice application is the detection
of digital convexity. Indeed, one needs a combination ofdbmputation of the
Lyndon factorization followed by checking if all factorseaChristoffel words, that
is palindrome words extended by a letter at each end andysagjan arithmetical
condition [8].

In this paper, we study equations that yield periodic wol$he preliminary Sec-
tion 2 we state some useful lemmas, where the key argumeaibfaning periodic-
ity is conjugacy. Then, in Section 3 we consider systems ofdguations and show
how palindromes propagate in a word. We provide a direct amchrsimpler proof
of aresult obtained by Labbé [11], based on a simple buieffiproperty (Lemma
7). By considering equations involving three palindronves,obtain results in the
spirit of the three squares lemma, which may be seen as emtetite results of
Paquin [14] for Christoffel words. More precisely, givemeh fixed palindromes in
some overlapping configuration, the relative distancewdsen each pair are con-
strained in order to apply Fine and Wilf's theorem and obferiodicity. Finally,
we consider equations of typkBAB XYXY on circular words, which are linked
with the representation of a tile yielding tesselationsha& plane with translated
copies of it. Again, constraints on the way these factorslapeyield periodicity,
leading to the discovery of an infinite class of polyominasgléddouble squares
in [15]) that tile the plane by translation in two distinctygaas depicted below.
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Fig. 1. A double square and its two associated tilings.



2 Preliminaries

All the basic terminology about words is taken from M. Lotieaj12]. In what
follows, Z is a finitealphabetwhose elements are callétters By word we mean
a finite sequence of letterg: [0..n— 1] — X, wheren € N. The length ofw is
lw| = n andwi]i] or w; denote itsi-th letter. The set ofi-length words ovek is
denoted>". By convention, theemptyword is denoted& and its length is 0The
free monoid generated By is defined byz* = [J=¢Z". The set of right infinite
words is denoted by® and we seE® = Z* UX®. Given a wordw € X%, a factor
u of wis a wordu € * such thatw = xuy, with x € &* andy € Z*. If x=¢
(resp.y = € ) thenu is called prefix (resp.suffiy. If w = xu, with |w] = n and
x| = k, thenx 1w = wlk..n— 1] = u is the word obtained by erasing fromits
prefix x. The set of all factors ofv is denoted by Fa¢w), those of lengtm is
Fact(w) = Fac{w) N X", and Prefw) is the set of all prefixes of. The number of
occurrences of a factare >* is |w|,. A periodof a wordw is an integemp < |w|
such thaw(i] = w[i + p|, for all i < |w| — p. If pis a period ofw, thenw is periodic
with periodp. An important result about periods is due to Fine and Wilf.

Theorem 1 (Fine et Wilf) Let w be a word having p and q for periods.|¥| >
p+q—gcdp,q), thenged p,q) is also a period of w.

A word is said to beprimitive if it is not a power of another word. Two words
andv areconjugate written u = v, when there are wordsy such thau = xy and
v = yx. Moreover, we say that is conjugate to v with delal|.

Lemma 2 If u is conjugate to v with delay;dand v is conjugate to w with delay
dy, then u is conjugate to w with delay € d> mod |u|.

Periodicity is related to conjugacy as the next proposstisimow.

Proposition 3 If w=ABC=CBA, thenAB|, |CB| andgcd(|AB|, |CBJ) are periods
of w.

Proof. By hypothesis, we have

AB-CB=ABC-B=CBA-B=CB-AB
which is of the formxy = yx, and therefore there exist a wop and two inte-
gersi and j such thatx = p' ety = p' ([12], Prop. 1.3.2). Henc&B = p' and

BC = pl. It follows that |p| divides both|AB| and |BC|, so that|p| also divides
gcd(|AB|,[CB|). O

Observe that ifA = € in the proposition above, them is conjugate to itself with
delayd = |B|, so that gcdd, |w|) is a period ofw. Moreover, the statement above
may be refined to take into account the fact thatis a period ofw. In fact a



more general result holds. Indeed, det{A B,C} — {A,B,C} be a bijection (or
permutation). Then we have the following property showima if the factorsA, B
andC have two occurrences im = ABC then periodicity appears.

Proposition 4 Let w=ABC=o(A)-0o(B)-o(C), whereo # Id. If A, B and C#£ ¢,
then the following conditions hold

(i) if ois cyclic then there exist p 2* and k> 1 € N such that ABC= p¥;
(i) otherwise, either ABC or AB or BC is periodic.

Proof. (i) In this case we have eithé&BC= BCAor ABC= CAB. In both cases, it
is an equation of the formy = yx, so that Proposition 3 applies.

(i) ABC=CBAimplies the first result, whil&B- C = BA-C implies the second
andA-BC = A-CBthe third. O

Thereversalof u=ugu; - --up_1 € 2" is the wordl = un_1uUn_2- - - Ug, and apalin-
dromeis a wordp such thatp = p. For a languagé C =%, the set of the palin-
dromic factors of its elements is denoted by (Pal Every word contains palin-
dromes, the letters arabeing necessarily part of them. This justifies the introduc-
tion of the function LP8w) which associates to any wowdits longest palindromic
suffix. We recall from [5] a useful combinatorial property.

Proposition 5 (Blondin Massé et al. [S])Assume that w= xy = yz with |y| # 0.
Then for some v, and some > 0 we have fronj12]

X=uvy=(uv)uz=vu (1)

and the following conditions are equivalent :

() x=7;

(i) uand v are palindromes;
(ii) wis a palindrome;

(iv) xyzis a palindrome.
Moreover, if one of the equivalent conditions above holésth

(v) yis a palindrome.

An interesting consequence is the following result.

Corollary 6 (Blondin Massé et al. [7])Assume that w= xp = gz where p and q
are palindromes such thad| > |x|. Then w has periotk| + |z|, and X is a product
of two palindromes.

This basic property is best possible. Indeed, it says thamwitvo distinct palin-
dromes overlap, even for one letter, then a period appeding iword.



3 Egquationsinvolving palindromes

A very special case of this problem already appears in thialtire. Indeed, Christof-
fel words (finite Sturmian words) have the property that thetial word is a palin-
drome, and their superposition is possible under somenaeiflc constraints. For
more details see for instance Simpson [16,17] or more rcBauin [14]. The
following results are excerpts of the last author Mastesigjd 1]. The presentation
given here is much simpler and is based on the following veeful lemma, which
may be considered as a special case of Proposition 5. It ieVewndependent
since it does not rely on periodicity.

Lemma7 Letw=yp=qy where pq € PalX). Then we PalZ).

Proof. We have two cases to consider according to the lengyhlbfly| > |p| then
g = p andw = pspwheresis the intersection of andy. Sinces is a palindrome
the result follows. Ifly| < |p|, we can writeq = you and p = p1y. Thenyp= qy
impliesypy = yauy andg; = pz1. On the other hand, taking the reversamofve
have py = yg. Substitutingp = p1y andqg = yoi, we havep: - yy= Y = VY- p1,
which implies thaw € PalX) by Prop. 5 (i),(iii). O

Proposition 8 Let xy, p,s€ Z* with |p| 4+ |s| > O, and let yw € PalX). Then the
following conditions hold :

() if xs= pv andXs= pw, then x is a palindrome;
(i) if xs= py andXs= py, then x and y are palindrome;
(i) if sx=vp and £=wp, then x is a palindrome.

Proof. (i) We write Sxs=S- pv=wp-s. Then Lemma 7 applies with= psso that
sxsis a palindrome, ang as well.

(if) We write Sxs=S- py=yp-s. If |y| > 0, since this equality as the foray = yu
with u = Sp, by Proposition 5 (i) and (iiisxsis a palindrome and so is If |y| =,

thenxs= p = Xsandx s a palindrome.

(i) Taking the reversal of the equations, we obtain froirtlie result. O

Corollary 9 Let xy, p,s € 2*, where with|p| #
following conditions hold :

S

, and vw € Pal%). Then the

(i) if sx= pv and &= pw, then x is a palindrome;
(i) if sx= py and &= py, then x is a palindrome and y is a palindrome.

Proof. (i) If |p| > |9/, then there existp’ # € such thax = p'vandX = p'w. From
Proposition 8 (i), we conclude thatis a palindrome. Ifp| < |5/, then there exists
s # € such thas’x = v ands'X = w andx is a palindrome from Proposition 8(iii).
(i) If |p| > |s|, then there existg’ # € such thax = p'y andX = p'y. The result
follows from Lemma 8(ii). If| p| < |5/, then there exists # € such thas'x =y and
sX =Y. The result follows from Proposition 8(ii). O




We consider now the relative position of three palindromesword, and start with
a property inducing periodicity in overlapping palindrasne

Proposition 10 Let w= pxu= yqu= yvr where pg and r are palindromes and
lg| > |x| and|q| > |v|. Let a= |x| + |y| and b= |u| + |v|. If |g] > a+b—gcd(a,b),
thengcd(a, b) is a period of w.

Proof. The relative positions gb, q andr is as follows.

p | X

v | r

Applying Corollary 6 to the equationgx = yq andqu = vr, we obtain thayqis
periodic with perioda = |x| + |y| and thatyqis periodic with period = |u| + |v]. In
particular,g has both periods. Sindg| > a+b—gcd(a,b), then the Fine and Wilf’s
theorem tells us thathas period gc@h, b) too. Finally, sinceq| > a+b—gcd(a, b)
implies that|g| > a and |g| > b, thenyqg and qu both have period g¢d,b) and
w = yquis periodic with period gcgy,b). O

As a direct consequence of this Proposition, we know a liitienore wheng and
r are the longest palindromic suffixes.

Corollary 11 If q=LPS(px) or r = LPS(qu), with |x| > 0and|v| > 0. Then|q| >
a+b—1, implies thatgcda,b) # 1.

Proof.If gcd(a,b) = 1, thenw = a/™! by Proposition 10. Therefore LRP&u) = vr £
r since|v| > 0, a contradiction. O

The next proposition is similar but deals with another canfigion.

Proposition 12 Let w= pxu= yvqu= yr where p, q and r are palindromes such
that|g| > [x| and|r| > |xu|. Let a= |x| +|y| + |u| and b= |y| + |v| + |x]. If |yvq >
a+b—gcda,b), thengcd(a,b) is a period of w.

Proof. The relative positions gb,q andr is depicted below.

p | X

Applying Corollary 6 to the equations = pxu= yr and px = yvg, we obtain that
w is periodic with perioda andyvqis periodic with periodb. If |[yvq > a+b—
gcd(a, b), then from Fine and Wilf's theorem, we obtain that ¢gad) is a period
of yvg Finally, sincelyvq > a, the period gc@a, b) can be extended over alland
the result follows. O



4 Equationson circular words

Words may overlap in many ways depending on their relatigtjoms, and to deal
with all the possible configurations we need a convenieatim. Letu,v € >* and
d € Z, we say thatl overlaps v with delay o

—v] <d < |ul

and if there exiss,t € Z* such thad = |s| — |t| andtu andsvare comparable for
the prefix order. In the pictures belowpverlapsv with delayd = |s| — |t| positive
in both (a) and (b) and negative in both (c) and (d).

N
@ s 1 v ]
d
N 0 ]
e s [ v |
S t 0]
© ] v | 5] v |
d
" C [ u ]
v ] s | v ]

Examples. The wordcheval overlapsheval et with delay 0. The wordheval et
overlaps/al et with delay 3. The worduper duper overlapsup with delay{1,6}.

The relation® = {(u,v,d) € £* x £* x Z | u overlapsv with delayd} satifies some
properties that are easy to verify (see [11])(ufv,d) € R and(u,v,d") € R with
d #£d’, we will abuse the notation and simply write,v,{d,d’}) € K . For instance,
the wordper du overlapssuper duper with delay{—2,—7}.

Lemma 13 [11](4.2) Let u, ve £* and d€ Z. Then the following conditions are
equivalent:

() (uvd)e

(i) (v,u )e:&

(i) (8.%,[u/— M —d) € R
(v) (7.0, —|u]+d) € X

Lemma14 Letu, v, w, z Z* and de Z such thatuvywz d) € . Then:

() (uvwd) e R;
(i) (uwzd)e R ifd < |uf;
(i) (vwzd—|u|) € R if —|w| <d—|u].

Lemmal5 Letu, v, we Z* and d, dz € Z such that(u,v,d1) € R and(v,w,dy) €
R . Ifdidz > 0and|d; + dp| < |ul, then(u,w,d; +d2) € R.



An immediate consequence of Lemmas 2 and 14 follows.

Lemmal6 Let uv,w,x,y,z< Z* be such thatu| = |v|. Suppose that uy is conju-
gate to vx with delay dand vw is conjugate to uz with delay.df d;d> > 0 and
di +d2 < |u, then d +d2 is a period of both u and v.

Proposition 17 Letuv,x,y e Z*, and k,/, ne Z such thatu| = |v| =k, |X| = |y| =
and n= k+ /. Suppose that uy is conjugate to vx with delgyatid that ¥ is
conjugate to o with delay d. Let d= d; + d». Then we have:

() ifd <k, thend is a period of uandv;

(i) if 2n—d < k, then2n—d is a period of u and v;
(i) ifd < ¢,thend is a period of x and y;
(iv) if 2n—d < /¢, then2n—d is a period of x and y.

Proof. (i) Follows directly from Lemma 16. (ii) Follows from Lemmab;Lsince
VX is conjugate tauy with delayn—d; andux is conjugate tosy with delayn—
do. Similarly, (iii) and (iv) both follow from Lemma 16 sincgu is conjugate to
xv with delayd; from Lemma 2 andku is conjugate toyv with delay d, from
Lemma13. O

Now, we consider equations of typdAB = X YXY , or equivalently, wordsy € =*
satisfying the following properties:

() w=ABAB,withABeZ*
(i) wp= pXYXY orsw= XYXY s

wherep ands are respectively a prefix and a suffixwf Without loss of general-
ity, the casesw= XYXY smay be dropped since it amounts to a renaming of the
variables. An example of the situatiarp = pXYXY is depicted in Figure 2.

1S
I

2
P R P

p X Y X Y

Fig. 2. EquatiorABAB = X YXY.

Let d; be the delay betweeA and X, andd, the one betweeB andY. We will
suppose in addition th&#| > |d1| > 0 and|B| > |d2| > 0. Clearly, the overlapping
of ABAB and XYXY is completely determined b#, B, |X| andd;. Indeed, by
construction, the delagl, betweenB andY is defined byd, = d; + |X| — |A| and

Y| = |A| + |B| — |X| since|AB| = |XY|. We are interested in the particular cases
wheredids > 0. Without loss of generality, we may restrict our study te tase
di,d> > 0, since the casd;,d> < O is obtained from the first one by taking the
mirror image of the equatloABAB XYXY . The overall situation is completely
described by the following set of eight overlapping relasio



@ (A X,di) e R and(AX,di) € R,

(b) (X,B,|X|—dy) € R and(X,B, |X|—dp) € R,

€) (B,Y,d2) € R and(B,Y,dp) € R,

d)  (Y,AlY|—di) e R and(Y,A Y| —di) € R.

For practical reasons, it is convenient to work with thisateposition instead of
the general equatioABAB = XYXY . We setd = d; + do and start with a general
result on periodicity oA, B, X andY.

Proposition 18 If the length of A (resp. B, X, Y) is strictly greater thamhen A
(resp. B, X, Y) has periodl

Proof. First, note that we haveX| = |A| + d» — d1. By the overlapping relations
decomposition(A, X,d;) € R and(A,X,d;) € R. By Lemma 13,

('&7X7d1) ER = (X7A7 |X‘ - |A‘ +d1) €ER <= <X7A7d2) €R.

Then by Lemma 150 = d; + dp is a period ofA if |A] > & and a period oK if
|X| > &. The argument is exactly the same BandY. O

Now, letAq, Ao be the prefix and the suffix @& of lengthd; andB,, B, be the prefix
and the suffix oB of lengthdy, that is

A=Au=vAy, and B=B;s=1tBy.
Observe that with those notations, we can wxitandY as
Y=AU=VA, and X=B,d=t'By,

as shown in Figure 3.

A B A B

A | A2 [B: B2| A, | AL [B2 B A
By Bi| A | e Ba| o | A

X Y X Y

Fig. 3. Finer factorization oABAB

Recall that the fractional power of a wonde =* is defined asv' = wl") p wherer
is a rational such thaiw| € N andp is the prefix ofw of length(r — |r|)|w|. Then



using Proposition 18, we can write

A= (AiB2)'5 and A= (AB1)5;
B=(BiA1)s and B= (BoAx)3;
X = (BoA1)'5 and X = (BiAg) '3 ;
Y = (AB1)F and B= (ABy)5;

to obtain the following proposition.

Proposition 19 Let A, B, X, Ye =*, such that ABB = XYXY . Let A, Ay, By and
By be as above. Letid= |A1| = |Az|, d2 = |B1| = |B2| and d = di + dy. Then the
following properties hold:

(i) if |A] > 9, then AB; is conjuguate to AB; with delay|A| +d2 mod),
(i) if |B] > 9, then AB; is conjuguate to AB; with delay|B|+d; modd.

Proof. (i) Suppose thatA| = k mod3. SinceA = (AB,)'5, A = (AB1)'s and
|A| > &, thenA;1B; is conjugate td;A; with delayk. We also have thaB; A, is
conjuguate toA;B; with delayds. Then by Lemma 2, we conclude thaiB; is
conjuguate ta\;B; with delay(k+d) modd = (|A|+d2) modd.

(if) Suppose thaiB| =1 modd. SinceB = (BlAvl)Lgl, B= (E}AZ)L? and|B| > 9,
then BlAvl is conjuguate t&\szz with delayl. Since|A;| = dj, we also have that
R}Bz is conjuguate tchﬂg with delayd;. By Lemma 2, we obtain theBlAvl is
conjuguate taB,A, with delay (I +d;) modd. Finally, applying Lemma 13, we
conclude tha\;B; is conjuguate ta\;B; with delay (I +di) modd = (|A| + dy)
modd. O

Several results follow from this proposition since it makt&s conditions of Propo-
sition 17 satisfied. Due to lack of space we only mention sofiteem, that we
used in connection with the problem of determining a claggings of the plane.

Corollary 20 If [A|+d2 =0 modd or |B|+d; =0 modd, then A = Ay and
B, = Bo.

Corollary 21 If |A[, [B] > 3, |A| +d2 =0 modd and [B|+d; =1 modd, then
ABAB = XYXY =a".

Corollary 22 Assume thatgd=dy =d, i.e.|A| = |B| = |X|=|Y|=/andd = 2d.
Let/ > dand?=n modd. If 2/Jd—n| < d then A, Az, B; and B have period
2/d—n|.

Characterization of double squares.polyominoP is represented by a wotsP)
on the 4-letter alphabeff = {a,b,a, b} encoding its contour. There is a natural in-
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volution defined orE, by = : a+— a;b +— b, consisting in swapping the elementary
directions. The composition = ~ o~ is an antimorphism interpreted as follows:
if we £ is a path, therw is the same path traversed in the opposite direction.
Deciding if a polyomindP tiles the plane by translation amounts to check if the cir-
cular wordb(P) can be factorized a3 P) = ABCABC, where at most one variable
is empty [4].P is called asquareif one variable is empty, otherwise it is called an
hexagonMoreover, although some polyominoes admtb(P)|) distinct hexagon
factorizations, it has been conjectured in [15] that sgaiamit at most two dis-
tinct factorizations. Squares having exactly two distfactorizations yield distinct

tilings as illustrated in Figure 1.

All results of Section 4 obtained from equations of tyd®8AB = XYXY, are also
valid for equations of the forlABAB = XYXY by replacing™ with = everywhere.
Since the problem of characterizing double squares regjsoting equations of
this last form, it provides additional constraints for fingithem. For instance, it has
been conjectured in [15] that the boundary of prime doubleses always satisfies

the equation e o
ABAB = XYXY, forAB,X,Y € PalE"). (2)
In this specific case, by combining the palindromic condgiavith the™ version
of Propostion 19, we obtain the following proposition:

Proposition 23 Assume thatA|, |B|, |X| and |Y| are greater thand and let k=
|A|+d2 modd, | = |B|+d; modd. Then k+1 # dy + da.

Incidentally, an interesting first step in tackling the geth@roblem is to describe
all polyominoes whose boundary words satisfy Equationl{2ye fix |A| = |B| =
|X| =1|Y| =43, and consider all possible delaysuch that 1< d < 42 in Equa-
tion (2), then prime double squares are obtained only when

d=1,2,4,5,6,9,14,17 26,29 34,37,38 39,41, 42.

Also, note that each double square obtained with ddl&yisometric to the one
obtained with delay 43 d. The eight polyominoes in question are illustrated in
Figure 4. A description of two infinite families of double sqas can be found in

[6].

4 I A2 BB 3.

Fig. 4. Prime double squares with| = |B| = |X| = |Y| = 43.
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