Codings of rotations are full

A. Blondin Massé S. Brlek S. Labbé L. Vuillon

Université du Québec à Montréal

EUROCOMB 2009
September 11th, 2009
Palindromes

- tenet
- ressasser
- reconocer
- kisik
The Fibonacci word

We define \(f_{-1} = b, \ f_0 = a \) and, for \(n \geq 1 \),

\[
f_n = f_{n-1}f_{n-2}.
\]

Therefore, we have

\[
\begin{align*}
f_0 &= a \\
f_1 &= ab \\
f_2 &= aba \\
f_3 &= abaab \\
f_4 &= abaababa \\
f_5 &= abaababaabaab \\
& \vdots \\
\end{align*}
\]

The infinite word \(f_\infty \) is called the Fibonacci word.
The Thue-Morse word

We define $t_0 = a$ and, for $n \geq 1$,

$$t_n = t_{n-1}t_{n-1}.$$

so that

$$
\begin{align*}
t_0 &= a \\
t_1 &= ab \\
t_2 &= abba \\
t_3 &= abbabaab \\
t_4 &= abbabaabbaabababba \\
t_5 &= abbabaabbaababababaababbaababbaababbaababbaababbaab
\end{align*}
$$

The infinite word t_∞ is called the **Thue-Morse word**.
Theorem (Droubay, Justin and Pirillo, 2001)

Let w be a finite word. Then $|\text{Pal}(w)| \leq |w| + 1$.

- Assume that the first occurrence of some palindromes p and q ends at the same position.
Theorem (Droubay, Justin and Pirillo, 2001)

Let \(w \) be a finite word. Then \(|\text{Pal}(w)| \leq |w| + 1 \).

- Assume that the first occurrence of some palindromes \(p \) and \(q \) ends at the same position.
Theorem (Droubay, Justin and Pirillo, 2001)

Let w be a finite word. Then $|\text{Pal}(w)| \leq |w| + 1$.

- Assume that the first occurrence of some palindromes p and q ends at the same position.
- Then $p = q$.
Theorem (Droubay, Justin and Pirillo, 2001)

Let \(w \) be a finite word. Then \(|\text{Pal}(w)| \leq |w| + 1 \).

Assume that the first occurrence of some palindromes \(p \) and \(q \) ends at the same position.

Then \(p = q \).

Theorem (Droubay, Justin and Pirillo, 2001)

Sturmian words are full, i.e. they realize the upper bound.
Palindromic complexity

Number of palindrome factors

Length of prefix

Fibonacci word

Thue-Morse word

Fixed point of $a \mapsto abb, b \mapsto ba$

Upper bound
The Fibonacci word is full

\[w = a \]

Palindromes \(a \)
The Fibonacci word is full

\[w = a \ b \]

Palindromes

\[a \]

\[b \]
The Fibonacci word is full

\[w = a \ b \ a \]

Palindromes

\[
\begin{align*}
\text{a} \\
\text{b} \\
\text{a \ b \ a}
\end{align*}
\]
The Fibonacci word is full

\[w = a \ b \ a \ a \]

\[
\begin{align*}
\text{Palindromes} & \\
& a \\
& \quad b \\
& a \ b \ a \\
& & a \ a
\end{align*}
\]
The Fibonacci word is full

\[w = a \ b \ a \ a \ b \]

<table>
<thead>
<tr>
<th>Palindromes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>a b a</td>
<td>a</td>
</tr>
<tr>
<td>a a</td>
<td></td>
</tr>
<tr>
<td>b a a b</td>
<td></td>
</tr>
</tbody>
</table>
The Fibonacci word is full

\[w = a \ b \ a \ a \ b \ a \]

Palindromes

\[
\begin{array}{c}
a \\
b \\
a \ b \ a \\
a \ a \\
b \ a \ a \ b \\
a \ b \ a \ a \ b \ a
\end{array}
\]
The Fibonacci word is full

\[w = a \ b \ a \ a \ b \ a \ b \]

Palindromes

\[
\begin{align*}
& a \\
& \quad \ b \\
& a \ b \ a \\
& a \ a \\
& b \ a \ a \ b \\
& a \ b \ a \ a \ b \ a \\
& \quad \ b \ a \ b
\end{align*}
\]
The Fibonacci word is full

\[w = a \ b \ a \ a \ b \ a \ b \ a \]

Palindromes

\[
\begin{array}{cccccccc}
\text{a} \\
\text{b} \\
\text{a} \ b \ a \\
\text{a} \ a \\
\text{b} \ a \ a \ b \\
\text{a} \ b \ a \ a \ b \\
\text{b} \ a \ b \\
\text{a} \ b \ a \ b \ a \\
\end{array}
\]
The Fibonacci word is full

\[w = a \ b \ a \ a \ b \ a \ b \ a \ a \ a \ \ldots \]
The Thue-Morse word is lacunary

\[w = a \]

Palindromes

\[a \]
The Thue-Morse word is lacunary

\[w = a \ b \]

Palindromes

\[
\begin{align*}
\text{a} \\
\text{b}
\end{align*}
\]
The Thue-Morse word is lacunary

\[w = a \ b \ b \]

Palindromes

\[
\begin{array}{c}
\text{a} \\
\text{b} \\
\text{b} \\
\text{b} \\
\end{array}
\]

There is no new palindrome at this position!
The Thue-Morse word is lacunary

\[w = a \ b \ b \ a \]

Palindromes

\[
\begin{array}{c}
a \\
b \\
b \\
b \\
a \ b \ b \ a
\end{array}
\]
The Thue-Morse word is lacunary

\[w = a \ b \ b \ a \ b \]

Palindromes

\[
\begin{aligned}
& a \\
& \quad b \\
& \quad \quad b \\
& \quad \quad b \\
& a \ b \ b \ a \\
& \quad \quad b \\
& \quad \quad a \ b \ b \ a \\
& \quad \quad \quad b \\
& \quad \quad \quad a \ b \ b \ a \\
& \quad \quad \quad \quad b \\
& \quad \quad \quad \quad a \ b \ b \ a
\end{aligned}
\]
The Thue-Morse word is lacunary

\[w = a \ b \ b \ a \ b \ a \]

Palindromes

\[
\begin{align*}
\text{a} \\
\ b \\
\ b \ b \\
\ a \ b \ b \ a \\
\ b \ a \ b \\
\ a \ b \ a
\end{align*}
\]
The Thue-Morse word is lacunary

\[w = a \ b \ b \ a \ b \ a \ a \]

Palindromes

\[
\begin{align*}
& a \\
& b \\
& b \\
& b \\
& a \\
& b \\
& a \\
& b \\
& a \\
& a \\
& a \\
\end{align*}
\]
The Thue-Morse word is lacunary

\[w = a \ b \ b \ a \ b \ a \ a \ b \]

Palindromes

\[
\begin{array}{c}
\ a \\
\ b \\
\ b \ b \\
\ a \ b \ b \ a \\
\ b \ a \ b \\
\ b \ a \ b \\
\ a \ b \ a \\
\ a \ a \\
\ b \ a \ a \ b \\
\end{array}
\]
The Thue-Morse word is lacunary

\[w = a \ b \ b \ a \ b \ a \ a \ b \ b \ \ldots \]

Palindromes

\[
\begin{align*}
& a \\
& \quad b \\
& \quad \quad b \ b \\
& \quad \quad a \ b \ b \ a \\
& \quad \quad \quad b \ a \ b \\
& \quad \quad \quad \quad a \ b \ a \\
& \quad \quad \quad \quad \quad a \ a \\
& \quad \quad \quad \quad \quad \quad b \ a \ a \ b
\end{align*}
\]

There is no new palindrome at this position!
Complete return words

We say that v is a complete return word of u in w, if v starts at an occurrence of u and ends at the end of the next occurrence of u.

Fact
A word w is full if and only if every complete return word of a palindrome factor of w is a palindrome.
The **coding of rotations** of parameters \((x, \alpha, \beta)\) is the word \(C = c_0 c_1 c_2 \cdots\) such that

\[
c_i = \begin{cases}
0 & \text{if } x + i\alpha \in [0, \beta) \\
1 & \text{if } x + i\alpha \in [\beta, 1)
\end{cases}
\]
The coding of rotations of parameters \((x, \alpha, \beta)\) is the word \(C = c_0 c_1 c_2 \cdots\) such that

\[
c_i = \begin{cases}
0 & \text{if } x + i\alpha \in [0, \beta) \\
1 & \text{if } x + i\alpha \in [\beta, 1)
\end{cases}
\]
The coding of rotations of parameters \((x, \alpha, \beta)\) is the word \(C = c_0 c_1 c_2 \cdots\) such that

\[
c_i = \begin{cases}
0 & \text{if } x + i\alpha \in [0, \beta) \\
1 & \text{if } x + i\alpha \in [\beta, 1)
\end{cases}
\]
The coding of rotations of parameters \((x, \alpha, \beta)\) is the word \(C = c_0c_1c_2\cdots\) such that
\[
c_i = \begin{cases}
0 & \text{if } x + i\alpha \in [0, \beta) \\
1 & \text{if } x + i\alpha \in [\beta, 1)
\end{cases}
\]
The coding of rotations of parameters \((x, \alpha, \beta)\) is the word \(C = c_0c_1c_2 \cdots\) such that

\[
c_i = \begin{cases}
0 & \text{if } x + i\alpha \in [0, \beta) \\
1 & \text{if } x + i\alpha \in [\beta, 1)
\end{cases}
\]
Many interesting problems related to codings of rotations:

- **Density** of the letters 0 and 1,
- **Complexity**, i.e. the number of factors of length n, or **palindromic** and **f-palindromic** complexity,
- Applications to **number theory** [Adamczewski, 2002],
- etc.

In particular, Rote (1994) expressed sequences of complexity $2n$ with respect to codings of rotations.
The different cases

Let C be a coding of rotations of parameters (x, α, β).

- If α is rational, then C is periodic.
- If $\alpha = \beta$ is irrational, then C is Sturmian
 \[f(n) = n + 1. \]
- If α and β are rationally dependent, then C is quasi-Sturmian.
 \[f(n) = n + k, \quad \text{for some constant } k. \]
- Otherwise, C is a Rote sequence
 \[f(n) = 2n, \quad \text{for large enough } n. \]
Main result

Theorem

Every coding of rotations is full.

The proof is based on the following ideas:

1. Return words
2. Interval exchange transformations
3. Poincaré’s first return function
4. Many results on those dynamical systems
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$$C = 000011100001111000011100001100000111000 \cdots$$
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$$C = 0000111000011110000111000011100000111000\cdots$$
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$$C = 0000111000011110000111000011100000111000 \cdots$$
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$$C = 00001110000111100001110000011100000111000\cdots$$
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$$C = 0000111000011110000111000011100000111000\cdots$$
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$C = 000011100001111000011100001110000111000001110000 \cdots$

\[\beta - 2\alpha \]

\[l_{001} \]

\[l_{000} \]

\[l_{011} \]

\[l_{011} \]

\[l_{111} \]

\[l_{110} \]

\[l_{100} \]

\[l_{100} \]

\[y \]

\[y + \alpha \]

\[\beta \]

\[0 \]

Blondin Massé et al. (UQÀM, U. Savoie)

Codings of rotations are full

EUROCOMB 2009 14 / 15
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$$C = 00001110000111100001111000011100000111000\ldots$$
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$$C = 000011100011110000111000011100000111000\cdots$$
Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$$C = 0000111000011110000111000011100000111000\cdots$$
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$$C = 0000111000011110000111000011100000111000\ldots$$
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$$C = 000011100001111000011100001110000\cdots$$
Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$$C = 000011100001111000111000011100000111000\cdots$$
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

\[C = 0000111000011110000111000011100000111000 \cdots \]
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$$C = 0000111000011110000111000011100000111000 \cdots$$
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$$C = 0000111000011110000111000011100000111000 \cdots$$
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$$C = 000011100001111000011100001110000111000\cdots$$
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$$C = 00001110000111100001110000111000011000\cdots$$
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$$\mathbf{C} = 00001110000111100001110000111000 \ldots$$
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$$C = 0000111000011110000111000011100000111000\cdots$$
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$C = 0000111000011110000111000011100000111000\cdots$
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$$C = 00001110000111100001110000111000 \cdots$$
Idea of the proof

Let \(x = 0.102 \), \(\alpha = 0.135 \) and \(\beta = 0.578 \). Then

\[
C = 0000111000011110000111000011100000111000 \cdots
\]
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$$C = 0000111000011110000111000011100000111000\cdots$$
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$$C = 000011100001111000011100000111000 \cdots$$
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$$C = 000011100001111000011100001110000111000 \cdots$$
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$$C = 0000111000011110000111000011100000111000\cdots$$
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$$C = 0000111000011110000111000011100000111000\cdots$$
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$$C = 00001110001111000011100001110000111000 \cdots$$
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$$C = 00001110000111100001110000111000 \cdots$$
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$$C = 0000111000011110000111000011100000111000 \cdots$$
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

$C = 0000111000011110000111000011100000111000\cdots$
Idea of the proof

Let $x = 0.102$, $\alpha = 0.135$ and $\beta = 0.578$. Then

\[C = 0000111000011110000111000011100000111000 \cdots \]
This research was driven by computer exploration using the open-source mathematical software Sage [1] and its algebraic combinatorics features developed by the Sage-Combinat community [2], and in particular, F. Saliola, A. Bergeron and S. Labbé.

The pictures have been produced using Sage and pgf/tikz.
