Codings of rotations on two intervals are full

A. Blondin-Massé^a, S. Brlek^a, S. Labbé^a, L. Vuillon^b

^a Laboratoire de Combinatoire et d'Informatique Mathématique, Un. du Québec à Montréal, CP 8888 Succ. "Centre-Ville", Montréal (QC), CANADA H3C 3P8

^b Laboratoire de mathématiques, CNRS UMR 5127, Université de Savoie, 73376 Le Bourget-du-lac cedex, France

EXTENDED ABSTRACT

The coding of rotations is a transformation taking a point x on the unit circle and translating x by an angle α , so that a symbolic sequence is built by coding the iteration of this translation on x according to a partition of the unit circle [2]. If the partition consists of two intervals, the resulting coding is a binary sequence. In particular, it yields the famous Sturmian sequences if the size of one interval is exactly α with α irrational [3]. Otherwise, the coding is a Rote sequence if the length of the intervals are rationally independent of α [11] and quasi-Sturmian in the other case [6]. Many studies show properties of sequences constructed by codings of rotation in terms of their subword complexity [2], continued fractions and combinatorics on words [6] or discrepancy and substitutions [1]. Our goal is to link properties of the sequence given by coding of rotations with the palindromic structure of its subwords. The palindromic complexity |Pal(w)| of a finite word w is bounded by |w| + 1, and finite Sturmian (and even episturmian) words realize the upper bound [7]. The palindromic defect of a finite word w is defined in [5] by D(w) = |w| + 1 - |Pal(w)|, and words for which D(w) = 0 are called *full*. Moreover, the case of periodic words is completely characterized in [5]. Our main result is the following.

Theorem 0.1 Every coding of rotations on two intervals is full.

Our approach is based on return words of palindromes. Let *w* be a word, and $u \in Fact(w)$. Then *v* is a *return word* of *u* in *w* if $u \in Pref(v)$, $vu \in Fact(w)$ and $|vu|_{|u|} = 2$. Similarly, *v* is a *complete return word* of *u* in *w* if v = v'u, where *v'* is a return word of *u* in *w*. The set of complete return words of *u* in *w* is denoted by $\overline{Ret}_w(u)$. Clearly, the computation of the defect follows from the computation of the palindromic complexity. Indeed, the reader may verify the following character-

ization of full words (poorly efficient computationnaly speaking) :

$$w \text{ is full} \iff \forall p \in \operatorname{Pal}(w), \overline{\operatorname{Ret}}_w(p) \subseteq \operatorname{Pal}(w).$$
 (1)

Interval exchange transformations. Let $a, e, \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ be such that $\lambda_1, \lambda_2, \lambda_3 \geq 0$ and $\lambda_1 + \lambda_2 + \lambda_3 > 0$. Moreover, let $b = a + \lambda_1, c = b + \lambda_2, d = c + \lambda_3, f = e + \lambda_3, g = f + \lambda_2$ and $h = g + \lambda_1$. A function $T : [a, d[\rightarrow [e, h]$ is called a 3-*intervals exchange transformation* if

$$T(x) = \begin{cases} g + (x - a) & \text{if } a \le x < b, \\ f + (x - b) & \text{if } b \le x < c, \\ e + (x - c) & \text{if } c \le x < d. \end{cases}$$

The subintervals [a,b], [b,c] and [c,d] are said *induced* by *T*.

Coding of rotations. The notation adopted for studying the dynamical system generated by some partially defined rotations on the circle is from Levitt [8]. The circle is identified with \mathbb{R}/\mathbb{Z} , equipped with the natural projection $p : \mathbb{R} \to \mathbb{R}/\mathbb{Z}$: $x \mapsto x + \mathbb{Z}$. We say that $A \subseteq \mathbb{R}/\mathbb{Z}$ is an *interval of* \mathbb{R}/\mathbb{Z} if there exists an interval $B \subseteq \mathbb{R}$ such that p(B) = A.

An interval *I* of \mathbb{R}/\mathbb{Z} is fully determined by the ordered pair of its end points, Bord(*I*) = {*x*, *y*} where $x \le y$ or $x \ge y$. The open interval is denoted]*x*, *y*[, while the closed ones are denoted [*x*, *y*]. Left-closed and right-open intervals [*x*, *y*[as well as left-open and right-closed intervals]*x*, *y*] are also considered. The topological closure of *I* is the closed interval $\overline{I} = I \cup \text{Bord}(I)$, and its interior is the open set Int(*I*) = $\overline{I} \setminus \text{Bord}(I)$. Given a real number $\beta \in]0, 1[$, we consider the unit circle \mathbb{R}/\mathbb{Z} partitioned into two nonempty intervals $I_0 = [0,\beta[$ and $I_1 = [\beta,1[$. The rotation of angle $\alpha \in \mathbb{R}$ of a point $x \in \mathbb{R}/\mathbb{Z}$ is defined by $R_{\alpha}(x) = x + \alpha \in \mathbb{R}/\mathbb{Z}$, where the addition operation is denoted by the sign + in \mathbb{R}/\mathbb{Z} as in \mathbb{R} . As usual this function is extended to sets of points $R_{\alpha}(X) = \{R_{\alpha}(x) : x \in X\}$ and in particular to intervals. For convenience and later use, we denote $R_{\alpha}^{\gamma}(x) = x + \gamma \alpha \in \mathbb{R}/\mathbb{Z}$, where $y \in \mathbb{Z}$.

Let $\Sigma = \{0, 1\}$ be the alphabet. Given any nonnegative integer *n* and any $x \in \mathbb{R}/\mathbb{Z}$, we define a finite word C_n by

$$C_n(x) = \begin{cases} \varepsilon & \text{if } n = 0, \\ 0 \cdot C_{n-1}(R_{\alpha}(x)) & \text{if } n \ge 1 \text{ and } x \in [0, \beta[, \\ 1 \cdot C_{n-1}(R_{\alpha}(x))) & \text{if } n \ge 1 \text{ and } x \in [\beta, 1[. \end{cases}$$

The *coding of rotations* of x with parameters (α, β) is the infinite word

$$C_{\alpha}^{\beta}(x) = \lim_{n \to \infty} C_n(x).$$

For sake of readability, the parameters (α, β) are often omitted when the context is clear. One shows that C(x) is periodic if and only if α is rational. When α is irrational, with $\beta = \alpha$ or $\beta = 1 - \alpha$ we get the well known Sturmian words, the case $\beta \notin \mathbb{Z} + \alpha \mathbb{Z}$ yields Rote words, while $\beta \in \mathbb{Z} + \alpha \mathbb{Z}$ the quasi-Sturmian words [1,6].

For each factor *w* of the infinite word C(x), one defines the nonempty set

$$I_w := \{ x \in \mathbb{R}/\mathbb{Z} \mid C_n(x) = w \}.$$

Proposition 0.2 [4] Let C be the coding of rotation of parameters $\alpha, \beta \in \mathbb{R}/\mathbb{Z}$ and $n \in \mathbb{N}$. Then $P_n = \{I_w \mid w \in \text{Fact}_n(C)\}$ is a partition of \mathbb{R}/\mathbb{Z} .

The set I_w needs not be an interval, but under some constraints, there is a guarantee that I_w is indeed an interval.

Lemma 0.3 Let I be a finite set. Let $(A_i)_{i \in I}$ be a family of left-closed and rightopen intervals $A_i \subseteq \mathbb{R}/\mathbb{Z}$. Let $\ell = \min\{|A_i| : i \in I\}$ and $L = \max\{|A_i| : i \in I\}$. If $\ell + L \leq 1$, then $\bigcap_{i \in I} A_i$ is an interval.

Lemma 0.4 Let C(x) be a coding of rotations. If both letters 0 and 1 appear in the word $w \in Fact(C(x))$, then I_w is an interval.

Lemma 0.5 Let *C* be a coding of rotations of parameters α , β , *x*. If $\alpha < \beta$ and $\alpha < 1 - \beta$, then I_w is an interval for any $w \in Fact(C)$.

Definition 1 We say that a coding of rotations C of parameters α , β , x is non degenerate if $\alpha < \beta$ and $\alpha < 1 - \beta$. Otherwise, we say that C is degenerate.

In [4], the authors used the global symmetry axis of the partition P_n , sending the interval I_w on the interval $I_{\widetilde{w}}$. In fact, there are two points y_n and y'_n such that $2 \cdot y_n = 2 \cdot y'_n = \beta - (n-1)\alpha$ and the symmetry S_n of \mathbb{R}/\mathbb{Z} is defined by $x \mapsto 2y_n - x$.

Lemma 0.6 Let S_n be the symmetry axis related to $n \in \mathbb{N}$, $x, \alpha \in \mathbb{R}/\mathbb{Z}$ such that $x \notin \mathcal{P}_n$ and $m \in \mathbb{N}$.

- (i) If $S_n(x) = x + m\alpha$, then $S_n(x + \alpha) = x + (m 1)\alpha$.
- (ii) If $x \in \text{Int}(I_w)$, then $S_n(x) \in I_{\widetilde{w}}$
- (iii) If $S_n(x) = x + m\alpha$, then $C_{n+m}(x)$ is a palindrome.

Complete return words. this subsection describes the relation between dynamical systems and their associated word C. More precisely, we link complete return words of C to the Poincaré's first return function.

Poincaré's first return function. Let $I, J \subseteq \mathbb{R}/\mathbb{Z}$ be two nonempty left-closed and right-open intervals and $\alpha \in \mathbb{R}$. We define a map $r_{\alpha}(I,J) : I \to \mathbb{N}^*$ by $r_{\alpha}(I,J)(x) = \min\{k \in \mathbb{N}^* \mid x + k\alpha \in J\}$ for $x \in I$. The *Poincaré's first return function* $P_{\alpha}(I,J)$ of R_{α} on I is the function $P_{\alpha}(I,J) : I \to J$ given by $P_{\alpha}(I,J)(x) = x + r_{\alpha}(I,J)(x) \cdot \alpha$.

The study of Poincaré's first return function is justified by the following result which establishes a link with complete return words.

Proposition 0.7 Let $w \in \text{Fact}_n(C)$ and $r = r_\alpha(I_w, I_w)$. Then, $\overline{\text{Ret}}(w) = \{C_{r(x)+n}(x) | x \in I_w\}$.

Lemma 0.8 If $I \subseteq \mathbb{R}/\mathbb{Z}$ is a left-closed right-open interval, then $P_{\alpha}(I,I)$ is a 3-intervals exchange transformation.

Lemma 0.9 If $w = a^n$ is a word such that I_w is not an interval, then $P_{\alpha}(I_{wb}, I_{bw})$, where $b \in \{0, 1\}$, is a 3-intervals exchange transformation.

Properties of complete return words. The next results use the following notation. Let $w \in \text{Fact}_n(C)$. Suppose that $P_{\alpha}(I_w, I_{\widetilde{w}})$ is an 3-intervals exchange transformation and let J_1, J_2 and J_3 be its induced subintervals. Let $i \in \{1, 2, 3\}$ and x_i be the middle point of J_i . It follows from the preceding lemmas that $r_{\alpha}(I_w, I_{\widetilde{w}})(x) = r_{\alpha}(I_w, I_{\widetilde{w}})(x_i)$ for all $x \in J_i$. Hence, we define $r_i = r_{\alpha}(I_w, I_{\widetilde{w}})(x_i)$.

Lemma 0.10 For all $x, y \in J_i$, we have that $C_{r_i}(x) = C_{r_i}(y)$.

Proposition 0.11 *Assume that* I_w *is an interval and* $r = r_{\alpha}(I_w, I_w)$ *. Then,* $\overline{\text{Ret}}(w) = \{C_{r_1+n}(x_1), C_{r_2+n}(x_2), C_{r_3+n}(x_3)\}.$

Corollary 0.12 Every factor of a non degenerate coding of rotations as well as every factor of any coding of rotations containing both 0s and 1s has at most 3 (complete) return words.

Proposition 0.13 Suppose that $I_{w'}$ is not an interval, i.e. $w' = a^{n-1}$, $a \in \{0,1\}$. Let $b \in \{0,1\}$, $b \neq a$, w = w'b and $r = r_{\alpha}(I_{w'b}, I_{bw'})$. Then,

$$\overline{\text{Ret}}(w') \subseteq \{a^n\} \cup \{C_{r_1+n}(x_1), C_{r_2+n}(x_2), C_{r_3+n}(x_3)\}.$$

Corollary 0.14 Every factor w of any coding of rotations has at most 4 complete return words. Moreover, this bound is realized only if $w = a^n$.

The last Corollary is illustrated in the following example.

We then have all the necessary tools to prove that every complete return words

of a palindrome $w \in C$ is a palindrome and this implies the main result of this paper.

The fact that the number of (complete) return words is bounded by 3 for non degenerate codings of rotations can be found in the work of Keane, Rauzy or Adamczewski [9,10,1] with α irrational. Nevertheless, the proof provided takes into account rational values of α and β . We already know that |Ret(w)| for a nondegenerate interval exchange on k intervals is k [12], and that |Ret(w)| for a coding of rotation of the form $C^{\alpha}_{\alpha}(x)$ (the Sturmian case) is equal to 2. Here we handled the degenerate case as well.

References

- [1] B. Adamczewski, Codages de rotations et phénomènes d'autosimilarité, J. Théor. nombres Bordeaux 14 (2002), 351–386.
- [2] P. Alessandri and V. Berthé, Three distance theorems and combinatorics on words, *Enseig. Math.* 44 (1998), 103–132.
- [3] J. Berstel and P. Séébold, Sturmian words, in: Lothaire, Combinatorics on Words, Cambridge University Press, 2002.
- [4] V. Berthé and L. Vuillon, Palindromes and two-dimensional Sturmian sequences, J. of Automata, Language and Combinatorics, 6 (2001), 121–138.
- [5] S. Brlek, S. Hamel, M. Nivat and C. Reutenauer, On the palindromic complexity of infinite words, *Int. J. Found. Comput. Sci.* 15: 2 (2004), 293–306
- [6] G. Didier, Codages de rotations et fractions continues, J. Number Theory **71** (1998), 275–306.
- [7] X. Droubay, J. Justin and G. Pirillo, Episturmian words and some constructions of de Luca and Rauzy, *Theoret. Comput. Sci.* 255 (2001), 539–553.
- [8] G. Levitt, La dynamique des pseudogroupes de rotations, *Inventiones mathematicae* 113 (1993), 633–670.
- [9] M. Keane, Interval exchange transformations Math. Zeit. 141 (1975), 25–31.
- [10] G. Rauzy, Echange d'intervalles et transformations induites, *Acta. Arith.* **34** (1979), 315–328.
- [11] G. Rote, Sequences with subword complexity 2n, J. Number Theory 46 (1994), 196–213.
- [12] L. Vuillon, On the number of return words in infinite words constructed by interval exchange transformations, *PU.M.A.* Vol. 18 No. 3-4 (2007), 345–355.