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blondin masse.alexandre@courrier.uqam.ca, brlek.srecko@uqam.ca,
garon.ariane@courrier.uqam.ca, labbe.sebastien@courrier.uqam.ca

Abstract. Among the polyominoes that tile the plane by translation,
the so-called squares have been conjectured to tile the plane in at most
two distinct ways (these are called double squares). In this paper, we
study two families of tiles : one is directly linked to Christoffel words
while the other stems from the Fibonacci sequence. We show that these
polyominoes are double squares, revealing strong connections between
discrete geometry and other areas by means of combinatorics on words.
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1 Introduction

In a discussion following the presentation of X. Provençal at the DGCI 2006
conference held in Szeged [1], E. Andres asked if there were a description of tes-
selations of the plane with tiles whose borders were discrete segments. That was
the starting point of an investigation revealing interesting connections between
discrete geometry, combinatorics on words, Lindenmayer systems, cristallogra-
phy and number theory. The basic object of study is the ubiquitous polyomino,
widely studied in the literature for having connections in numerous fields, whose
list would be needless for our purpose.
There are different types of polyominoes

Fig. 1. A snail-shaped polyomino.

and here, by polyomino we mean a fi-
nite union of unit lattice squares (pixels)
in the discrete plane whose boundary
is a simple closed path. In particular,
a polyomino is simply connected (with-
out holes), and its boundary is simple
(does not cross itself). Paths are conve-
niently encoded by words on the alpha-
bet {a, a, b, b}, representing the elemen-
tary grid steps {→,←, ↑, ↓}. For instance, starting from S in counterclockwise
way, the boundary b(P ) of the polyomino P in Figure 1 is coded by the word

w = a2b
4
ab4a2bab

3
ab

3
aba3ba2ba7b6a6b

3
aba3b2abababa4b

4
a5ba2b2ab3ab.

Observe that we may consider the words as circular which avoids a fixed origin.
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The perimeter of a polyomino P is the length of its boundary words and is
of even length. The problem of deciding if a given polyomino tiles the plane by
translation goes back to Wisjhoff and Van Leeuven [2] who coined the term exact

polyomino for these. Beauquier and Nivat [3] gave a characterization stating
that the boundary b(P ) of an exact polyomino P satisfies the following (not
necessarily in a unique way) factorization

b(P ) = A ·B · C · Â · B̂ · Ĉ (1)

where at most one of the variables is empty, ·̂ = · ◦ ·̃, ·̃ is the usual reversal
operation and · is the morphism defined by a↔ a and b↔ b (see next section).
Hereafter, this condition is referred as the BN-factorization.

For example, the polyomino in Figure 2 is

Fig. 2. A pseudo-hexagon.

exact, has semi-perimeter 14 and its boundary
may be factorized as

ababa · bbaba · bbab · ababa · ababb · babb.

Polyominoes having a factorization with A, B
and C nonempty are called pseudo-hexagons.
If one of the variable is empty, they were called
pseudo-squares, and from now on we call them
squares. It has been shown in [4] that there ex-
ist polyominoes admitting an arbitrary num-
ber of distinct non trivial factorizations as
pseudo-hexagons. The case is different for squares. Indeed, it was conjectured
in [4] that a square polyomino has at most two distinct non trivial factorizations.

Polyominoes admitting two distinct fac-

Fig. 3. A double square and its
two square tilings.

torizations as squares (see Figure 3 for in-
stance) are called double squares. A brute-
force search based on Equation (1) can enu-
merate double squares exhaustively but as they
have very specific structural properties, an ef-
ficient way to generate them has a greater
interest. Moreover, some conjectures (e.g. re-
lated to palindromes [4]) could be solved by
a complete description of double squares. In this paper we use a combinatorial
approach, relying on efficient techniques [1, 5], to construct two classes of double
square polyominoes. Those two families, interesting in themselves, are important
for the zoology because they describe entirely the table of small double squares
available in [4]. The first is composed of Christoffel tiles, those for which the
boundary word is composed of crenellated versions of two digitized segments
(answering partially to E. Andres’ question), for which a characterization is pro-
vided (Theorem 2). The second is built on the Fibonacci recurrence: a special
subclass of Fibonacci tiles is completely described (Theorem 3), and we describe
four more derived classes of squares polyominoes. Finally, this study reveals new
connections with Lindenmayer systems and number theory among others.



2 Preliminaries

The usual terminology and notation on words is from Lothaire [6]. An alphabet

Σ is a finite set whose elements are called letters. A finite word w is a sequence
of letters, that is, a function w : {1, 2, . . . , n} → Σ, where wi is the i-th letter,
1 ≤ i ≤ n. The length of w, denoted by |w|, is given by the integer n. The unique
word of length 0 is denoted ε, and the set of all finite words over Σ is denoted
Σ∗. The free monoid Σ∗ is the set of all finite words over Σ, and Σ≥k is the
set of words of length at least k. The reversal w̃ of w = w1w2 · · ·wn is the word
w̃ = wnwn−1 · · ·w1. Words p satisfying p = p̃ are called palindromes. The set of
all palindromes over Σ is denoted Pal(Σ∗). A word u is a factor of another word
w if there exist x, y ∈ Σ∗ such that w = xuy. We denote by |w|u the number of
times that u appears in w. Two words u and v are conjugate if there are words x
and y such that u = xy and v = yx. In that case, we write u ≡ v. Clearly, ≡ is an
equivalence relation. Given two alphabets Σ1 and Σ2, a morphism is a function
ϕ : Σ∗

1 → Σ∗
2 compatible with concatenation, that is, ϕ(uv) = ϕ(u)ϕ(v) for any

u, v ∈ Σ∗
1 . It is clear that a morphism is completely defined by its action on the

letters of Σ1.

Paths on the square lattice. The notation of this section is partially adapted
from [5]. A path in the square lattice, identified as Z × Z, is a polygonal path
made of the elementary unit translations

a = (1, 0), a = (−1, 0), b = (0, 1), b = (0,−1).

A finite path w is therefore a word on the alphabet F = {a, a, b, b}, also known
as the Freeman chain code [7, 8] (see [9] for further reading). Furthermore, we
say that a path w is closed if it satisfies |w|a = |w|a and |w|b = |w|b. A simple

path is a word w such that none of its factor is a closed path. A boundary word is
a closed path such that none of its proper factors is closed. Finally, a polyomino

is a subset of Z2 contained in some boundary word. For instance, for the paths

Fig. 4. Paths in the discrete plane: (a) arbitrary, (b) simple (c) closed.

represented in Figure 4, the corresponding Freeman chain code is respectively

(a) p1 = abababaababbab (b) p2 = bababaab, (c) p3 = babababbabaa.

On the square grid, a path describes a sequence of basic movements in the left
(l), right (r), forward (f) and backward (b) directions. Each pair of letters in



F is associated to a movement on the alphabet R = {l,r, f,b} by a function
g : F2 → R defined by

g(u) =





l if u ∈ Vl = {ab, ba, ab, ba},

r if u ∈ Vr = {ba, ab, ba, ab},

f if u ∈ Vf = {aa, aa, bb, bb},

b if u ∈ Vb = {aa, aa, bb, bb},

that can be extended to a derivative function ∂ : F≥1 → R∗ by setting

∂w =

{∏n
i=2 g(wi−1wi) if |w| ≥ 2,

ε if |w| = 1.

where n is the length of the word w and the product is the concatenation. For
example, if p2 = bababaab as defined above then ∂p2 = rllrrfr.

Note also that each path w ∈ F≥1 is completely determined, up to transla-
tion, by its initial step α ∈ F and a word y on the alphabet R = {l,r, f,b}.
Thus, we use calculus notation and we introduce a function

∫
α

: R∗ → F≥1

defined recursively by
∫

α

y =

{
α if |y| = 0,

α
∫
β
y′ if |y| ≥ 1,

where β ∈ F is the letter such that αβ ∈ Vx and y = xy′ with x ∈ R. For
example, if y = rllrrfr, then

∫
b
y = bababaab = p2. The next lemma gives

some easily established statements and shows how both functions ∂ and
∫
behave

naturally.

Lemma 1. Let w,w′ ∈ F∗, y, y′ ∈ R∗, α ∈ F and x ∈ R. Then

(i)
∫
w1

∂w = w and ∂
∫
α
y = y, where w1 is the first letter of w.

(ii) ∂(ww′) = ∂w · g(wnw
′
1) · ∂w

′ and
∫
α
yxy′ =

∫
α
y
∫
β
y′, where wn is the last

letter of w, w′
1 is the first letter of w′ and β is the last letter of

∫
α
yx. ⊓⊔

Note that |∂w| = |w|−1 and |
∫
α
y| = |y|+1. In some situations, for example

when w represents a circular word, this is not convenient. For that reason we

introduce two auxiliary functions. The first
◦

∂: F∗ → R∗ is defined by

◦

∂ w =

{
ε if |w| = 0,

∂ww1 if |w| ≥ 1,

where w1 is the first letter of w. The second is
∮
α
: R∗ → F∗, defined as follows :

if β is the last letter of
∫
α
y, then

∮
α
y is the word such that

∮
α
y · β =

∫
α
y. It

is clear that
∮
w1

◦

∂ w = w and
◦

∂
∮
α
y = y for all w ∈ F∗ and y ∈ R∗.

In [5], the authors also introduced a valuation function ∆ defined on R∗ by
∆(y) = |y|l − |y|r + 2|y|b as well as on F≥1 by setting ∆(w) = ∆(∂w). This
valuation is nothing but the winding number.



Transformations. Some useful transformations on F∗ are rotations by an angle
kπ/2 and reflections with respect to axes of angles kπ/4, where k ∈ N. The
rotation of angle π/2 translates merely in F by the morphism:

ρ : a 7→ b, b 7→ a, a 7→ b, b 7→ a.

We denote the other rotations by ρ2 and ρ3 according to the usual notation. The
rotation ρ2 is also noted · since it can be seen as the complement morphism

defined by the relations a = a and b = b. Similarly, for k ∈ {0, 1, 2, 3}, σk is the
reflection defined by the axis passing through the origin and having an angle of
kπ/4 with the absciss. It may be seen as a morphism on F∗ as well:

σ0 : a 7→ a, a 7→ a, b 7→ b, b 7→ b and σ1 : a 7→ b, b 7→ a, a 7→ b, b 7→ a.

The two other reflections are σ2 = σ0 ◦ ρ
2 and σ3 = σ1 ◦ ρ

2. Another useful map
is the antimorphism ·̂ = · ◦ ·̃ defined on F∗. If w ∈ F∗ is a path, then ŵ is the
path run in the opposite direction. The effect of the operators ·̂ , ·̃ and · are
illustrated in Figure 5.

Fig. 5. Effect of the operators ·̂ , ·̃ and · on F
∗.

On the alphabet R, we define an involution

ı : l 7→ r,r 7→ l, f 7→ f,b 7→ b.

This function ı extends to R∗ as a morphism, so that the map ·̂ extends as well
to ·̂ : R∗ → R∗ by ·̂ = ı ◦ ·̃ . All these operations are closely related as shown
in the lemmas hereafter. The proofs are left to the reader.

Lemma 2. Let w ∈ F∗, y ∈ R∗ and α ∈ F . The following properties hold:

(i) ∂w = ∂ρi(w) for all i ∈ {1, 2, 3},
(ii) ı(∂w) = ∂σi(w) for all i ∈ {0, 1, 2, 3},

(iii) ∂ŵ = ∂̂w = ∂w̃,
(iv) ρi(

∫
α
y) =

∫
ρi(α)

y for all i ∈ {1, 2, 3},

(v) σi(
∫
α
y) =

∫
σi(α)

ı(y) for all i ∈ {0, 1, 2, 3},

(vi)
∫̃
α
y =

∫
β
ŷ where β is the last letter of

∫
α
y,

(vii)
∫̂
α
y =

∫
β
ŷ where β is the last letter of

∫
α
y,

(viii) If β is the last letter of
∫
α
y, then β = ρi(α) where i = ∆(y). ⊓⊔

For the rest of the paper, the words w of F∗ and R∗ satisfying ŵ = w are
called antipalindromes.



Lemma 3. Let w ∈ F∗. Then the following statements are equivalent.

(i) ŵ = ρ2(w)
(ii) w is a palindrome
(iii) ∂w is an antipalindrome.

Finally, reflections on F∗ are easily described on R∗.

Lemma 4. Let w ∈ F∗. There exists i ∈ {0, 1, 2, 3} such that ŵ = σi(w) if and
only if ∂w is a palindrome. ⊓⊔

Square Tilings. Let P be a polyomino having W as a boundary word and Q a
square having V = ABÂB̂ as a BN-factorization. Then the product of P and Q,
denoted by P ◦ Q, is the polyomino whose boundary word is given by γ(W ),

where γ : F∗ → F∗ is the morphism defined by γ(a) = A, γ(a) = Â, γ(b) = B

and γ(b) = B̂. In [4], a polyomino R is called prime if for all pair of polyominoes
P and Q such that R = P ◦Q, we have either R = P or R = Q.

Proposition 1 (Provençal [4]). If a square P has two factorizations, then

they must alternate, i.e. no factor of one factorization is included in a factor of

the other factorization. ⊓⊔

Lemma 5. Let P be a square of boundary word W , A and B be words such that

W ≡ ABÂB̂. Then A,B ∈ Pal(F∗) if and only if W = ww for some word w.

Proof. If W = ww then every conjugate of W has this form. Therefore, if W ≡

ABÂB̂, we have that AB = ÂB̂ = ÃB̃, showing that A and B are palindromes.
Conversely, one shows that if A and B are palindromes, then W ≡ ABAB. ⊓⊔

For more details on tiling by translation and square tilings see [1, 10].

3 Christoffel Tiles

Recall that Christoffel words are finite Sturmian words, that is, they are obtained
by discretizing a segment in the plane. Let (p, q) ∈ N2 with gcd(p, q) = 1, and
let S be the segment with endpoints (0, 0) and (p, q).

The word w is a lower Christoffel word if the
path induced by w is under S and if they both
delimit a polygon with no integral interior point.
An upper Christoffel word is defined similarly.
A Christoffel word is either a lower Christoffel
word or an upper Christoffel word. On the right
is illustrated the lower one corresponding to

w = aabaababaabab.

It is well known that if w and w′ are respectively
the lower and upper Christoffel words associated
to (p, q), then w′ = w̃. Moreover, we have w = amb and w′ = bma, where m is
a palindrome and a, b are letters. We call cutting word the word m. They have
been widely studied in the litterature (see e.g. [11], where they are also called
central words.



The next theorem gives a very useful characterization of Christoffel words.

Theorem 1 (Pirillo [12]). A word m on the two-letter alphabet {a, b} ⊂ F is

a cutting word if and only if amb and bma are conjugate. ⊓⊔

Another useful result is the following.

Proposition 2 (Borel and Reutenauer [13]). The lower and upper Christof-

fel words w and w′ are conjugate by palindromes. ⊓⊔

Let B = {a, b}. Consider the morphism λ : B∗ → F∗ by λ(a) = abab and
λ(b) = ab, which can be seen as a “crenellization” of the steps east and north-

east. Two useful properties of λ are used through the rest of this section and are
easy to establish.

Lemma 6. Let v, v′ ∈ B∗. Then

(i) bλ(v) is a palindrome if and only if v is a palindrome.

(ii) λ(v) ≡ λ(v′) if and only if v ≡ v′. ⊓⊔

We call crenellated tile a polyomino whose boundary word is given by λ(w)λ(w)
where w = avb and v ∈ Pal(B∗). A crenellated tile is a square since

λ(w)λ(w) = ababλ(v)abababλ(v)ab ≡ bab · abλ(v)a · b̂ab · ̂abλ(v)a.

We say that a crenellated tile obtained from a lower Christoffel word w is a
basic Christoffel tile while a Christoffel tile is a polyomino isometric to a basic
Christoffel tile under some rotations ρ and symmetries σi (see Figure 6).

Fig. 6. Basic Christoffel tiles: (a) w = aaaab (b) w = abbbb and (c) w = aabaababaabab.

Theorem 2. Let P be a crenellated tile. Then P is a double square if and only

if it comes from a Christoffel word.

Proof. (⇒) Assume that P is a double square. Let W = λ(w)λ(w) be its bound-
ary word, where w = avb ∈ aPal(B∗)b. We know from Proposition 1 that the
factorizations must alternate. Since P has the factorization

W = bab · abλ(v)a · b̂ab · ̂abλ(v)a,

it means that the second factorization is obtained from one of the conjugates
W ′ = ababλ(v)abababλ(v)ab or W ′′ = babλ(v)abababλ(v)aba. Let V ′ and V ′′ be
respectively the first half of W ′ and W ′′. Then, by Lemma 5, either V ′ or V ′′ is



a product of two palindromes x and y. First, assume that the other factorization
is obtained from V ′. Then V ′ = λ(avb) = ababλ(v)ab = xy. Taking the reversal

on each side, we get λ̃(avb) = yx, that is λ(avb) ≡ λ̃(avb). But

λ̃(avb) = baλ̃(v)baba = bab̃λ(v)aba = babλ(v)aba ≡ abλ(v)abab = λ(bva),

which means that λ(avb) ≡ λ(bva). Thus, by Lemma 6, we deduce avb ≡ bva.
Hence, by Theorem 1, we conclude that v is a cutting word so that w = avb is
a lower Christoffel word.

It remains to consider the case where the second factorization is obtained
from V ′′. Hence, we could write V ′′ = babλ(v)aba = xy. But such palindromes
x and y cannot exist since a appears only at the end of V ′′.

(⇐) Assume that w is a lower Christoffel word. We know from Proposition
2 that w = amabm′b for some palindromes m and m′. Therefore,

λ(w)λ(w) = λ(amabm′b)λ(amabm′b)

= ababλ(m)aba · babλ(m′)ab · ababλ(m)aba · babλ(m′)ab,

showing that P admits a second square factorization. ⊓⊔

It can also be shown in view of Lemma 5, that for each Christoffel tile such
that W ≡ ABÂB̂, the factors A and B are palindromes which suggests that the
conjecture of Provençal [4] is true.

4 Fibonacci Tiles

In this section, in order to simplify the notation, we overload the operator · by
defining it over R∗ by y = ι(y) for all y ∈ R∗. We define a sequence (qn)n∈N in
R∗ by q0 = ε, q1 = r and

qn =

{
qn−1qn−2 if n ≡ 2 mod 3,

qn−1qn−2 if n ≡ 0, 1 mod 3.

whenever n ≥ 2. The first terms of (qn)n∈N are

q0 = ε q3 = rl q6 = rllrllrr

q1 = r q4 = rll q7 = rllrllrrlrrlr

q2 = r q5 = rllrl q8 = rllrllrrlrrlrrllrllrr

Note that |qn| = Fn is the n-th Fibonacci number. Moreover, given α ∈ F , the
path

∫
α
qn presents strong symmetric properties, as shown by the next lemma.

Lemma 7. Let n ∈ N. Then q3n+1 = pα, q3n+2 = qα and q3n+3 = rα for some

antipalindrome p, and some palindromes q, r and some letter α ∈ {l,r}.



Proof. By induction on n. For n = 0, we have indeed q1 = ε · r, q2 = ε · r and
q3 = r · l. Now, assume that q3n+1 = pα, q3n+2 = qα and q3n+3 = rα for some
antipalindrome p, some palindromes q, r and some letter α ∈ {l,r}. Then

q3n+4 = q3n+3q3n+2 = q3n+2q3n+1q3n+2 = qαpαq · α

q3n+5 = q3n+4q3n+3 = q3n+3q3n+2q3n+3 = rαqαr · α

q3n+6 = q3n+5q3n+4 = q3n+4q3n+3q3n+4 = qαpαqαrαqαpαq · α.

Since qαpαq is an antipalindrome and rαqαr, qαpαqαrαqαpαq are palindromes,
the result follows. ⊓⊔

The proof of the following lemma is technical and can be done by induction.
It is not included here due to lack of space.

Lemma 8. Let n ∈ N and α ∈ F .

(i) The path
∫
α
qn is simple.

(ii) The path
∮
α
(q3n+1)

4 is the boundary word of a polyomino. ⊓⊔

A Fibonacci tile of order n is a polyomino having
∮
α
(q3n+1)

4 as a boundary
word, where n ∈ N. They are somehow related to the Fibonacci Fractals found
in [14]. The first Fibonacci tiles are illustrated in Figure 7.

Fig. 7. Fibonacci tiles of order n = 0, 1, 2, 3, 4.

Theorem 3. Fibonacci tiles are double squares.

Proof. We know from Lemma 7 that q3n+1 = px for some antipalindrome p
and some letter x ∈ {l,r}. If x = r, we consider the reversal of the path, i.e.
̂(q3n+1)4, so that we may suppose that x = l. Therefore, on the first hand, we

obtain
∮

α

(q3n+1)
4 =

∫

α

pl · pl · p̂l · p̂ =

∫

α

p ·

∫

ρ(α)

p ·

∫̂

α

p ·

∫̂

ρ(α)

p,

because ∆(p) = 0. On the other hand, the conjugate q′3n+1 = q3n−1q3n of q3n+1

corresponds to another boundary word of the same tile. Using again Lemma 7,
we can write q3n = rl and q3n−1 = qr, for some palindromes q and r. Therefore,
pl = q3n+1 = q3nq3n−1 = rlql so that p = rlq. But p is an antipalindrome,
which means that q′3n+1 = q3n−1q3n = qlrl = p̃l = pl. Hence, since p is an
antipalindrome as well, we find

∮

α

(q′3n+1)
4 =

∫

α

pl · pl · p̂l · p̂ =

∫

α

p ·

∫

ρ(α)

p ·

∫̂

α

p ·

∫̂

ρ(α)

p. ⊓⊔



As for Christoffel Tiles, Fibonacci Tiles also suggest that the conjecture of
Provençal for double squares [4] is true as stated in the next result.

Corollary 1. If ABÂB̂ is a BN-factorisation of a Fibonacci tile, then A and

B are palindromes.

Proof. The conclusion follows from Lemmas 2 and 3 and Theorem 3. Indeed,
since p is an antipalindrome, then

∫
α
p is a palindrome. The same argument

applies for the second factorization. ⊓⊔

We end this section by presenting four families of double squares generaliz-
ing the Fibonacci tiles. Consider the sequence (rd,m,n)(d,m,n)∈N3 satisfying the
following recurrence, for d ≥ 2,

rd,m,n =





rd−1,n,mrd−2,n,m if d ≡ 0 mod 3

rd−1,n,mrd−2,n,m if d ≡ 1 mod 3

rd−1,m,nrd−2,m,n if d ≡ 2 mod 3

Using similar arguments as in the Fibonacci tiles case, one shows that both
families obtained respectively with seed values

r0,m,n = (rllr)mrlr, r1,m,n = (rllr)nr, (2a)

r0,m,n = (rl)mrlr, r1,m,n = (rl)nrl (2b)

are such that
∮
α
(rd,m,nrd,n,m)2 is a boundary word whose associated polyomino

is a double square (see Figure 8), where α ∈ F . Their level of fractality increases
with d so that one could say that they are crenellated versions of the Fibonacci
Tiles.

Fig. 8. Upper row: tile obtained from r2,0,1 with seeds (2a); tiles obtained from r3,m,0

with seeds (2b), for m = 0, 1, 2. Lower row: generalized Fibonacci tile obtained with
parameters d = 3, m = 1 and n = 0 on sequence r with seed values (2a).



Similarly, let (sd,m,n)(d,m,n)∈N3 be a sequence satisfying for d ≥ 2 the recurrence

sd,m,n =

{
sd−1,n,msd−2,n,m if d ≡ 0, 2 mod 3,

sd−1,m,nsd−2,m,n if d ≡ 1 mod 3.

Then the families obtained with seed values

s0,m,n = (rllr)mrlr, s1,m,n = rl, (3a)

s0,m,n = (rl)mrlr, s1,m,n = r (3b)

yield double squares
∮
α
(sd,m,nsd,n,m)2 as well (see Figure 9). One may verify

that rd,0,0 = sd,0,0 for any d ∈ N if the seed values are respectively (2a) and (3b)
or respectively (2b) and (3a).

Fig. 9. Tile obtained from s3,2,0 with seeds (3a); tiles obtained from s2,0,n with seeds
(3b) for n = 1, 2.

5 Concluding remarks

The study of double squares suggests interesting and challenging problems. For
instance, it is appealing to conjecture that a prime double square is either of
Christoffel type or of Fibonacci type. However, that is not the case, as illustrated
by Figure 10. This begs for a thorough study in order to exhibit a complete

Fig. 10. Three double squares not in the Christoffel and Fibonacci tiles families.

zoology of such tilings. On the other hand, there is a conjecture of [4] stating

that if ABÂB̂ is the BN-factorization of a prime double square, then A and
B are palindromes, for which we have not been able to provide any counter-
example. Another problem is to prove that Christoffel and Fibonacci tiles are
prime, that is, they are not obtained by composition of smaller squares. This
leads to a number of questions on the “arithmetics” of tilings, such as the unique
decomposition, distribution of prime tiles, and their enumeration.



The fractal nature of the Fibonacci tiles strongly suggests that Lindemayer
systems (L-systems) may be used for their construction [15]. The formal gram-
mars used for describing them have been widely studied, and their impact in
biology, computer graphics [16] and modeling of plants is significant [17]. A
number of designs including snowflakes fall into this category.
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