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Abstract. To every word w is associated a sequence Gw built by com-
puting at each position i the length of its longest palindromic suffix.
This sequence is then used to compute the palindromic defect of a finite
word w defined by D(w) = |w|+ 1− |Pal(w)| where Pal(w) is the set of
its palindromic factors. In this paper we exhibit some properties of this
sequence and introduce the problem of reconstructing a word from Gw.
In particular we show that up to a relabelling the solution is unique for
2-letter alphabets.
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1 Introduction

Among the many ways of measuring the information content of a finite word,
counting the number of its distinct factors or subwords of given length has
been widely used and known as its complexity. A refinement of this notion
amounts to restrict the factors to palindromes. The motivations for the study
of palindromic complexity comes from many areas ranging from the study of
Schrödinger operators in physics [4, 7, 20] to number theory [6] and combina-
torics on words where it appears as a powerful tool for understanding the local
structure of words. It has been recently studied in various classes of infinite
words, an account of which may be found in the survey provided by Allouche
et al. [5].

In particular, the palindromic factors give an insight on the intrinsic struc-
ture, due to its connection with the usual complexity, of many classes of words.
For instance, they completely characterize Sturmian words [23], and for the
class of smooth words they provide a connection with the notion of recurrence
[12, 13].

∗ with the support of NSERC (Canada)
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The problem of reconstructing words from partial information arise naturally.
We mention a few of them that have been solved for a fixed alphabet Σ:

Some set A of factors is fixed. Find the shortest words containing the set A of
all factors of given length k. This leads to the De Bruijn sequences [15, 17, 19]
whose construction uses a graph Gk where vertices are the given words of length
k, and where edges model the scanning of the word by a window of size k. The
solution is then obtained by computing all Eulerian cycles in the graph. It
is worth noting that finding the lexicographically smallest such word is much
easier: it is given by the lexicographic concatenation of Lyndon words on Σ
whose lengths are divisible by k (See Fredericksen et al. [18]).

Some set A is fixed along with some suitable hypothesis. Construct all words w
such that the set of its factors A = F (w). The technique used for this problem is
based on constructing a set of minimal forbidden words, that is the extensions
of words in A that do not belong to A [9]. That technique was also used in [11]
to construct words whose language of palindromes is a fixed set P . It turns out
that it is a rational language. Concerning multisets of subsequences, instead
of factors we mention a general result. If the set A contains sufficiently many
subsequences of length k, then the solution is unique [26]: indeed, for a word
w of lengh n > 7 and k ≥ [n/2] the subsequences uniquely determine w, and
for k < log2 n they do not. See also an interesting combinatorial approach
depending on the Burrows-Wheeler transform (See Mantaci et al. [25]).

Fixed complexity. The most famous example is that of Sturmian words (see
Lothaire [22] for a substantial review) which are characterized by the complexity
P (n) = n + 1 established by M. Morse [28]. Sturmian words are the discretiza-
tion of lines with irrational slopes, and they are easily constructed from the
continued fraction expansion corresponding to the irrational slope. The com-
plexity is therefore not enough to characterize completely a word. However, in
the case of the Thue-Morse complexity [10, 24], there are essentially only two
such words [1, 2].

In this paper we introduce the problem of reconstructing a word from sequences
describing its palindromic complexity. Droubay, Justin and Pirillo [16] noted
that the palindrome complexity |Pal(w)| of a word w is bounded by |w| + 1,
and observed that it is computed by a sequential algorithm listing the first
occurrences of longest palindromic suffixes, called unioccurrent in [16]. For our
study we need the following two auxiliary functions on words. Given a word of
length n, w : [0..(n − 1)] −→ Σ, we define two functions Gw, Hw : N −→ N by
Gw(i) = |LPS(w[0..i])| and

Hw(i) =

{
Gw(i) if it is the first occurrence of LPS(w[0..i])
0 otherwise

(1)

We first exhibit some combinatorial properties of the palindromic factors in
words (Section 3) and use them in order to obtain properties of the sequences
G and H (Section 4). Finally we study the problem of reconstructing words
from given sequences, and establish conditions for unicity on 2-letter alphabets.
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2 Preliminaries

In what follows, Σ is a finite alphabet whose elements are called letters. By word
we mean a finite sequence of letters w : [0..(n − 1)] −→ Σ, where n ∈ N. The
length of w is |w| = n and w[i] or wi denote its i-th letter. The set of n-length
words over Σ is denoted Σn. By convention, the empty word is denoted ε and
its length is 0. The free monoid generated by Σ is defined by Σ∗ =

⋃
n≥0 Σn.

The set of right infinite words is denoted by Σω and we set Σ∞ = Σ∗∪Σω.
Given a word w ∈ Σ∞, a factor f of w is a word f ∈ Σ∗ satisfying

∃x ∈ Σ∗, ∃y ∈ Σ∞, w = xfy.

If x = ε (resp. y = ε ) then f is called prefix (resp. suffix). The set of all factors
of w is denoted by Fact(w), those of length n is Factn(w) = Fact(w)∩Σn, and
Pref(w) is the set of all prefixes of w. The number of occurrences of a factor
f in w is denoted |w|f . A period of a word w is an integer p < |w| such that
w[i] = w[i + p], for all i < |w| − p. If w = pu, with |w| = n and |p| = k, then
p−1w = w[k..(n−1)] = u is the word obtained by erasing p. A word is said to be
primitive if it is not a power of another word. Two words u and v are conjugate
when there are words x, y such that u = xy and v = yx. The conjugacy class of
a word w is denoted by [w]; note that the length is invariant under conjugacy.
For a given word w of length n, any of its conjugates is obtained by cyclic
permutation, that is σi(w) = w[i..(n − 1)]w[0..(i − 1)].

The reversal of u = u0u1 · · ·un−1 ∈ Σn is the word ũ = un−1un−2 · · ·u0,
and a palindrome is a word p such that p = p̃ . Since every word contains
palindromes, the letters and ε being necessarily part of them, the set of its
palindromic factors is Pal(w), and its palindromic complexity is denoted by
|Pal(w)|. Conjugacy is an equivalence relation having numerous properties and
for our purpose we need the following one easily obtained by induction: let p
and q be two palindromes, then σi(pq) = p′q′, for some palindromes p′ and q′.
We start by quoting Lemma 1 of [8] in order to establish a useful combinatorial
property.

Lemma 1 (Blondin Massé et al. [8]) Assume that w = xy = yz. Then for
some u, v, and some i ≥ 0 we have from [21]

x = uv, y = (uv)iu, z = vu; (2)

and the following conditions are equivalent :

(i) x = z̃ ;
(ii) u and v are palindromes;
(iii) w is a palindrome;
(iv) xyz is a palindrome.

Moreover, if one of the equivalent conditions above holds then

(v) y is a palindrome.
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As a consequence we have the following proposition.

Proposition 1 Assume that w = xp = qz where p and q are palindromes
such that |q| > |x|. Then w has period |x| + |z|, and xz̃ is a product of two
palindromes.

Proof. Since |q| > |x|, there exists a non-empty word y such that q = xy and
p = yz. It follows that

w x̃ = q z x̃ = x y z x̃ = x p x̃ = x p̃ x̃ = x z̃ ỹ x̃ = x z̃ q̃ = x z̃ q.

Considering qzx̃ = xz̃q, we obtain from Equation (2) that |xz̃| is a period of
wx̃. From Lemma 1 (iii), there exist palindromes u, v such that xz̃ = uv. ⊓⊔

In order to compute the palindromic complexity we need the function
LPS : Σ∗ −→ Σ∗ which associates to any word w its longest palindromic
suffix LPS(w).

Droubay, Justin and Pirillo [16] noted that the palindrome complexity
|Pal(w)| of a word w is bounded by |w| + 1, and that finite Sturmian (and
even episturmian) words realize the upper bound. Moreover they implicitly
show that the palindrome complexity is computed by an algorithm listing the
longest palindromic suffixes which amounts to compute for a word w the func-
tions Gw, Hw : N −→ N defined by

Gw(i) = |LPS(w[0..i])|;

Hw(i) =

{
Gw(i) if it is the first occurrence of LPS(w[0..i]);
0 otherwise.

We often omit the subscript w in Gw and Hw when the context is clear. As an
example let w = aababbaababaaabaab. Then we have the following table :

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
w a a b a b b a a b a b a a a b a a b
G 1 2 1 3 3 2 4 2 4 3 3 5 7 3 5 7 5 4
H 1 2 1 3 3 2 4 0 4 0 0 5 7 3 5 7 5 0

A position in the word w where H vanishes is called a lacuna in [8]. For instance
the set of lacunas for w in the example above is {7, 9, 10, 17}. Equivalent words,
that is words obtained by relabelling of the alphabet, have obviously the same
functions G and H . For instance, on the 2-letter alphabet {a, b}, we have Gw =
Gw and Hw = Hw, where ( ) is the morphism defined by a = b, b = a.

The palindromic defect of a finite word w is defined in Brlek et al. [11] by
D(w) = |w|+1− |Pal(w)|, and words for which D(w) = 0, that is, such that H
does not vanish for any index are called full. In that paper it is also shown that
there exist periodic full words, and an optimal algorithm is provided to check if
an infinite periodic word is full or not. Moreover, a characterization by means
of a rational language is given for the language LP of words whose palindromic
factors belong to a fixed and finite set P of palindromes.
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3 Properties of the functions G and H

First observe that a word w is full if and only if Gw = Hw. Now we describe
the shortest words having a fixed defect value d. For instance, on a 2-letter
alphabet, the shortest words having one lacuna, i.e. when d = 1, are

w1 = aababbaa, w2 = aabbabaa, w3 = bbabaabb and w4 = bbaababb.

Observe that this set is closed under reversal (w1 = w̃2; w3 = w̃4) and comple-
mentation (w1 = w3; w2 = w4). On the other hand, one of the shortest words
having two lacunas is the following.

i 0 1 2 3 4 5 6 7 8 9
w b a a b a b b a a b
G 1 1 2 4 3 3 2 4 2 4
H 1 1 2 4 3 3 2 4 0 0

The example above extends to the infinite periodic word W = (baab.ab)ω

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 . . .
W b a a b a b b a a b a b b a a b a b . . .
G 1 1 2 4 3 3 2 4 2 4 3 3 2 4 2 4 3 3 . . .
H 1 1 2 4 3 3 2 4 0 0 0 0 0 0 0 0 0 0 . . .

where baab.ab is not the product of two palindromes, so that |Pal(W )| is finite
by virtue of a previous result (see Theorems 4 and 6 in [11]). More generally,
we have the following result.

Proposition 2 Let M(k, d) be the length of a shortest word on a k-letter al-
phabet Σ having defect d, we have :

M(k, d) =





8 if k = 2, d = 1,
d + 8 if k = 2, d ≥ 2,
d + k if k ≥ 3.

Proof. The first two cases follow from the observations above. For k ≥ 3, let
w be a word such that |w| = M(k, d). Since every letter occurs in w and w
has defect value d, we have M(k, d) ≥ d+k. Now, consider the infinite periodic
word w = (α1α2 · · ·αk)ω , where αi is a letter. Observe that Pal(w) = Σ, so that
each prefix of length n ≥ k + 1 has defect value n − k. Hence M(k, d) = d + k
for k ≥ 3. ⊓⊔

Lemma 2 Let w be a nonempty word, and let W = wω. Then we have

(i) Gw(0) = 1, and if Hw(i) = 1 then w[i] is the first occurrence of a letter;
(ii) if w = pq is primitive with p, q ∈ Pal(Σ∗) then limn−→∞ GW (n) = ∞;
(iii) if w is not the product of two palindromes then GW is eventually periodic.
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Proof. (i) Obvious. (ii) In this case by Theorem 4 of [11] the palindromic lan-
guage of W is infinite. Since for all k ≥ 0, (pq)kp is a palindromic prefix of
W , there are infinitely many palindromic prefixes of W . Moreover, we have
GW (i) = GW (i − |w|) + |w| for i ≥ 2|w|.

(iii) Here again by Theorem 4 of [11], the palindromic language of W is
finite. Therefore, let u be the shortest prefix of W containing all the palin-
dromes, and let k be the smallest integer such that u ∈ Pref(wk) then we have
GW (i) = GW (i + k|w|). ⊓⊔

Examples. Let W = (abc)ω, whose palindromic language is P = {a, b, c} taken
from [11] (Section 3). Then we have the following values for G and H :

i 0 1 2 3 4 5 6 7 8
W a b c a b c a b c . . .
G 1 1 1 1 1 1 1 1 1 . . .
H 1 1 1 0 0 0 0 0 0 . . .

Here are some typical periodic words with their characteristic functions:

W GW

an [1, 2, 3, 4, 5, · · · ]
a.bn [1, 1, 2, 3, 4, 5, · · · ]

(ab)n [1, 1, 3, 3, 5, 5, 7, 7, 9, 9, · · · , (2n + 1), (2n + 1), · · · ]

Moreover they are all full, since G and H coincide.

Another periodic example illustrating Lemma 2 (ii) is W = (aba.cbc)ω. Its
palindromic language is infinite and W has infinitely many palindromic pre-
fixes, and we have

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
W a b a c b c a b a a b a c b c a b a c b c . . .
H 1 1 3 1 0 3 5 7 9 5 7 9 11 13 15 11 13 15 17 19 21 . . .

Observe also that there are non periodic words U such that GU is periodic.
Indeed, take any nonperiodic word, for instance the Fibonacci word defined as

F = ϕω(a) = abaababaabaabab · · · , where ϕ(a) = ab; ϕ(b) = a.

Define the morphism θ : {a, b} −→ {a, b, c, d}∗ by a 7→ abcd; b 7→ acbd. Then
the word W = θ(F ) is nonperiodic, but GW = (1111)ω. Nevertheless we have
the following result showing a local periodical behaviour.

Lemma 3 Let w ∈ Σ∗. If there exists i such that G(i) = G(i + k) = l, with
l ≥ k, then the factor f = w[(i − l + 1)..(i + k)] has period 2k, and any factor
of length 2k of f is the product of two palindromes.
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Proof. Assume that q and p are the longest palindromic suffixes of length l at
positions respectively i and i + k. Then there exist x and z such that f = qz =
xp. In the case l = k, we have f = qp and the claim is true. If l > k there exists
a non-empty word y such that q = xy and p = yz. It follows from Proposition
1 that 2|x| is a period of f , and xz̃ is a product of two palindromes. Therefore,
any factor of length 2k is the product of two palindromes since it is a conjugate
of xz̃. ⊓⊔

The function G satisfies the following properties

Proposition 3 For any finite word w ∈ Σ∗, the following properties hold :

(i) G(i) ≤ max{|p| : p ∈ Pal(w[0..i])} ≤ i + 1
(ii) G(j) ≤ G(i) + 2(j − i), for all j ≥ i;
(iii) G(i+1) = G(i) =⇒ G(i) and G(i+1) are odd, and G(i+2) ∈ {G(i)+2, 2};
(iv) G(i + 1) = G(i) + 1 =⇒ LPS(w[0..i]) = αG(i)+1, for some α ∈ Σ;

Proof. (i) is obvious. (ii) First, note that G(i + 1) ≤ G(i) + 2 since the longest
palindromic suffix at position i+1 contains a palindrome of length G(i+1)− 2
ending at position i. The result follows by induction.

(iii) Follows from Lemma 3. (iv) Let p and q be the respective palindromes
at positions i and (i+1). Then we have q = pα for some α ∈ Σ, and we conclude
by using Proposition 1. ⊓⊔

Lemma 4 Let i ≤ k. If G(k) = G(i) + 2(k − i), then G(j) = G(i) + 2(j − i)
for all i ≤ j ≤ k.

Proof. G(k) − 2(k − j) ≤ G(j) ≤ G(i) + 2(j − i) and the left term is equal to

G(i) + 2(k − i) − 2(k − j) = G(i) + 2(j − i). ⊓⊔

The next proposition is obtained by adapting the proof of Proposition 3.

Proposition 4 For any finite word w ∈ {a, b}∗, the function H satisfies

(i) H(i + 1) − H(i) ≤ 2 ;
(ii) H(i + 1) = H(i) =⇒ H(i + 1) and H(i) are both odd;
(iii) H(i) ≤ max{|p| : p ∈ Pal(w)};
(iv) if H([i..(i + k + 2)]) = [n, 0, · · · , 0, m] for some i, then m < n + 2k.

4 Reverse engineering the functions G and H

Here we tackle the following problems. Given a (finite or infinite) sequence s
of integers, does there exist a word w such that Hw = s or Gw = s ? If such
a word w exists, under which conditions is it unique up to permutation of the
letters ?

We say that a finite/infinite sequence s is G-consistent (resp. H-consistent)
on Σ if there is at least one nonempty word w ∈ Σ∞ such that for all i, Gw(i) =
s[i] (resp. Hw(i) = s[i]). If there is only one such word (up to permutation of
the letters) then s is said to be unambiguous. A first simple result follows:
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Proposition 5 Let Σ be an alphabet of at most 3 letters. Then any G-
consistent sequence on Σ is unambiguous.

Proof. Let s be a G-consistent sequence. We proceed by induction on the length
of s. Then s[0] = 1 so that the base of the induction is trivially satisfied by
choosing one letter in Σ. Assume that s[0..i] is unambiguous. Then there exist
a word w, such that Gw[0..i] = s[0..i]. Two cases arise:

(a) s[i + 1] > 1: we set w[i + 1] = w[i + 2 − s[i + 1]].
(b) s[i + 1] = 1: if |s|1 = 2 then |Σ| = 2, so that w[i + 1] ∈ Σ \ {w[0]}.

If |s|1 > 2 then |Σ| = 3 and we have to consider two cases:
- if |s[0..i]|1 = 2, then we set w[i + 1] to the remaining letter;
- if |s[0..i]|1 > 2, then w[0..i] = pγβkαl where Σ = {α, β, γ}, p ∈ Σ∗, and
k, l ≥ 1, and we set w[i + 1] = γ. ⊓⊔

Observe that for larger alphabets, that is when |Σ| > 3, G-consistent se-
quences are not necessarily unambiguous, as shown in the following examples.

Example. Let Σ = {a, b, c, d} and consider the sequence s = [1, 1, 1, 3, 2, 1, 3, 5].
There is a unique word w[0..4] which is G-consistent with s[0..4] :

i 0 1 2 3 4 5 6 7
s 1 1 1 3 2 1 3 5
w a b c b b a b b
w′ a b c b b d b b

while two different words are consistent with s[0..5], a fact that follows from
Lemma 2(i).

One can easily see that the previous ambiguity is related with the presence of
more than three 1’s in the sequence s. However here is a word w having four
occurrences of 1, but uniquely determined by G as well.

Example. Let Σ = {a, b, c, d} and let s = [1, 1, 1, 3, 1, 3, 5, 7, 9]. There is a
unique word which is G-consistent with s:

i 0 1 2 3 4 5 6 7 8
s 1 1 1 3 1 3 5 7 9
w a b c b d b c b a

The situation is clearly explained by the following statement

Proposition 6 Let s be a G-consistent sequence. If there exist two distinct
words w, w′ consistent with s, then there exists i such that Gw(i) = Gw′(i) = 1
and Hw(i) = 0 or Hw′(i) = 0.

Proof. Indeed, if s[i] = 1, then w[i] is either a new letter or, a previously
encountered letter such that the longest palindromic LPS(w[0..i]) is the letter
itself. ⊓⊔
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Consider now the same problem for the function H . Since the functions G and
H coincide for full words, we have immediately the next result.

Corollary 1 Any full word (thus any Sturmian word) is uniquely determined
by the function H.

So, the function Gw encodes all the information on w, but this is no longer
true for the function Hw. Indeed, there exist H-consistent sequences that are
not unambiguous as shown in the following example: consider the word w =
abbabbbabaabb. Then, we have

Hwa = Hwb = (1, 1, 2, 4, 3, 5, 3, 5, 7, 3, 2, 4, 0, 0) (3)

but wa 6= wb.

Observe that the counterpart of Proposition 6 does not hold for the function H .
Indeed, every 1 in the sequence s = Hw corresponds necessarily to a new letter
in w. Consequently the presence of 1’s does not cause ambiguity, and |s|1 = |Σ|,
as shown below for a 5-letter alphabet {a, b, c, d, e}.

i 0 1 2 3 4 5 6 7 8
s 1 1 2 1 3 5 1 3 5
w a b b c b b e b b
w′ a b b d b b c b b

We point out that w and w′ are the same word up to a relabelling of the letters.

For words which are not full, the study of the H function is more com-
plex. However, there are some special conditions ensuring that an H-consistent
sequence s on a given Σ is also unambiguous.

Proposition 7 Let s be an H-consistent sequence such that s = s1 0k m s2

with m 6= 0, and s1 does not contain any 0. If m > 2k+1 then there is a unique
word w[ 0..(|s1| + k) ] such that Hw = s[ 0..(|s1| + k) ].

The proof is similar to that of proof of Proposition 5. As an example, consider
the following H-consistent sequence on Σ = {a, b}

i 0 1 2 3 4 5 6 7 8 9 10 11
s 1 2 1 2 4 6 4 3 3 0 0 6
w a a b b a a b a b x y z

where s1 = [ 1, 2, 1, 2, 4, 6, 4, 3, 3] , m = 6, and k = 2. The last three elements of
w can be uniquely determined since the factor b a b x y z has to be a palindrome,
that is x = z = b, and y = a.

Note that the bound k on the length of a subsequence of 0’s in s given in
Proposition 5 does not depend on the cardinality of Σ. On the other hand,
observe that if |Σ | = 2 and k = 1 the sequence s is still uniquely determined.
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For instance, consider the sequence s[0..12] = [1, 2, 1, 3, 3, 2, 4, 6, 5, 3, 5, 0, 3],
with Σ = {a, b}, and therefore m = 3:

i 0 1 2 3 4 5 6 7 8 9 10 11 12
s 1 2 1 3 3 2 4 6 5 3 5 0 3
w a a b a b b a b b b a a a

Here the cardinality of the alphabet allows only one possible choice of the letter
consistent with Hw(11) = 0, consequently m 6> 2k + 1 = 3, but the word w is
uniquely determined as well.

4.1 Infinite words

In the case of infinite words, the situation is similar and ambiguous H can
also occur. We start by recalling some facts. From [8, 11], we know that, when
analyzing the defect and the lacunas of an infinite word, it can present

(a) an infinite palindromic complexity with a finite number of lacunas;
(b) a finite palindromic complexity with an infinite number of lacunas;
(c) both infinite palindromic complexity and number of lacunas.

In general, in none of the three cases the function H is unambiguous, as it
is shown in the following examples.

Case (a): consider two words U and V having the same prefix of length 23

u1 = a b b a a b b a b a b a a a a b a b b b b a a,

and such that U = u1 a ( a b )ω and V = u1 b ( b a )ω. The two sequences
HU ([0..22]) and HV ([0..22]) are equal since they share a common prefix.
Now, since the suffix parts of U and V starting at position 23 satisfy
U [≥ 23] = V [≥ 23], we have HU = HV . Since, both u and v are even-
tually periodic, and since their period is the product of two palindromes,
the palindromic complexity of both u and v is infinite. Finally, an easy check
reveals that the suffix sequence of the function H , for n > 2, is

HU ([≥ 23]) = (0, 0, 0, 0, 0, 0, 0, 7, 7, 9, 9, 11, 11, . . . , (2n + 3), (2n + 3), . . .).

Case (b): let w = abbabbbabaabb, already used in Equation (3), and consider
the words U and V defined as follows, by means of the word w:

U = w · ab · bbaaa · (baabba)ω ,

V = w · ba · bbaaa · (baabba)ω .

The sequences HU and HV coincide and are

HU = HV = (1, 1, 2, 4, 3, 5, 3, 5, 7, 3, 2, 4, 0, 0, 0, 0, 0, 0, 0, 3, 5, 0, 5, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, · · ·)
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All the terms after position 22 are equal to 0 since the words U and V are
eventually periodic, with a period which is not the product of two palin-
dromes.

Case (c): finally, consider the words U and V defined as follows (using again
w = abbabbbabaabb):

U = w · ab · bbaaa · baab · baabba · (baab)2 · baabba . . . (baab)n · baabba . . .

V = w · ba · bbaaa · baab · baabba · (baab)2 · baabba . . . (baab)n · baabba . . . .

The sequences HU and HV coincide and their first terms are

HU = HV = (1, 1, 2, 4, 3, 5, 3, 5, 7, 3, 2, 4, 0, 0, 0, 0, 0, 0, 0, 3, 5, 0, 5, 0, 0, 0,

6, 8, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 12, 10, 12, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 14, 16, 14, 16, 0, 0, . . .).

The two sequences have an infinite number of new palindromes since the
palindromic factor baab is repeated an increasing number of times at each
step. At the same time the set of lacunas is infinite since the factor baabba,
which is not the product of two palindromes, occurs infinitely many times.

5 Further work

The problem of reconstructing words from the functions G and H leads to many
interesting developments, some of them requiring a deeper analysis in order to
produce efficient decision algorithms.

Consistency. Deciding if a given finite sequence s of numbers is G-consistent
(resp. H-consistent) may be easily achieved. Indeed, let k = |s|1. This implies
that the smallest alphabet Σ we have to consider contains at most k letters
(exactly k for H-consistency, by virtue of Lemma 2 (i)). Taking an order on the
letters of Σ permits to restrict the study to classes of words equivalent under
permutations of letters. A close look to the proof of Proposition 5 reveals all
the information in order to construct sequentially all words consistent with s:
indeed, it suffices to check at each position i, if LPS(w[0..i]) = s[i].

Random and exhaustive generation. The algorithms described above may be
used for constructing trees of words. Indeed, at each step i one constructs a trie
of words having height i+1 and satisfying G[i] = s[i+1] (resp. H [i] = s[i+1]).
The process stops if either it is impossible to construct the next step, or ends
successfully if i = |s|. In case of a successful termination it is easy to check if
every non leaf node has a unique son, solving the unambiguity problem of the
sequence s. These are the basic tools for constructing randomly or exhaustively
many classes of words, for instance all full words of length n.

Enumeration. Counting classes of G-consistent or H-consistent sequences
follows naturally. For instance, given a fixed length n, it amounts to count for
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a fixed alphabet Σ the set {Hw : w ∈ Σn }. Indeed, a greedy algorithm can be
implemented to obtain the first values: it suffices to generate all words in Σn,
and to compute H for each such word.

The enumeration formula of the finite Sturmian words is known [27]. Since
they are full, a closely related counting problem is that of determining a formula
for the number of non-Sturmian full words on the alphabet {a, b}∗. Determining
the number of words having a fixed number of lacunas is also challenging.

Characterization of special classes of G or H functions. For instance, given
a 2-letter alphabet Σ = {a, b} one might look for a description of the following
sets of functions:

G = {Gw : w ∈ {a, b}∗} H = {Hw : w ∈ {a, b}∗ such that w is full}.

In another direction it would be interesting to describe infinite words on fixed
alphabets whose G (or H) sequence is automatic.

Constrained reconstruction. Given a finite set of palindromes P , how can
we determine the shortest full word containing all the palindromes of P and
only those palindromes? The answer is based on Theorem 1 of [11]. Indeed, the
language of words having exactly P as palindromic factors is rational. Therefore
there exists a deterministic minimal automaton recognizing all these words. For
each palindrome q in P , there is a unique path starting from the initial state
whose trace is q. Collecting the target states T(P ) of all paths computing P ,
it suffices then to compute the shortest path starting from the initial state and
containing all states in T(P ). It may or may not exist, and if it does not, one
might relax the conditions by allowing some extra palindromes in order to find
a solution.

Structure of full words. Let w be a finite full word on a 2-letter alphabet Σ.
One can easily prove that Hw and H ew have the same elements, while Hw = H ew

if and only if w̃ = w or w̃ = w. The two sets of longest unioccurrent palindromic
suffixes of w and w̃ naturally define a permutation on the set {1, 2, . . . , |w|}.
More precisely, let p1, p2, . . ., p|w| be the longest palindromic suffixes of w
in order of their first occurrence in w and let xi be the position of the last
occurrence of pi in w. We define the permutation πw on {1, 2, . . . , |w|} by

πw(i) = |w| + |pi| − |xi|.

Now, let q1, q2, . . ., q|w| be the longest palindromic suffixes of w̃ in order of
their first occurrence in w̃. Then pi = qπw(i), for i = 1, 2, . . . , |w|. We illustrate
this fact by an example: let w = ababbabab, so that w̃ = bababbaba. Then we
have the following table showing that Hw 6= H ew,

i 1 2 3 4 5 6 7 8 9
LPSU(w) a b aba bab bb abba babbab ababbaba babab
LPSU(w̃) b a bab aba babab bb abba babbab ababbaba

and the permutation πw is (2, 1, 4, 3, 6, 7, 8, 9, 5).
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We would like to study the combinatorial properties of πw in relation with
those of the word w. In particular we are interested in characterizing the per-
mutations πw associated with full words. A similar study can also be performed
on arbitrary alphabets provide one replaces the ( ) operation by an arbitrary
permutation of the alphabet Σ.
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3. Allouche, J.-P. (1994) Sur la complexité des suites infinies, Bull. Belg. Math. Soc.
1:133–143.

4. Allouche, J.P. (1997) Schrödinger operators with Rudin-Shapiro potentials are
not palindromic, J. Math. Phys. 38:1843–1848.

5. Allouche, J.P., Baake, M., Cassaigne, J., and Damanik, D. (2003) Palindrome
complexity, Theoret. Comput. Sci. 292:9–31.

6. Allouche, J.P., and Shallit, J. (2000) Sums of digits, overlaps, and palindromes,
Disc. Math. and Theoret. Comput. Sci. 4:1–10.

7. Baake, M. (1999) A note on palindromicity, Lett. Math. Phys. 49:217–227.
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