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Abstract

The palindromic defect of a finite word w has been defined by D(w) =
|w|+1−|Pal(w)| where Pal(w) is the set of its palindromic factors. In this
paper we study the problem of computing the palindromic defect of finite
and infinite words. Moreover, we describe completely the lacunas (the
positions where the longest palindromic suffix is not uni-occurrent) in the
Thue-Morse word, showing that there exist infinite words with infinitely
many palindromes but infinite defect.

Keywords Palindromic complexity, defect, Thue-Morse, lacunary words.

1 Introduction

Among the many ways of measuring the information content of a finite word,
counting the number of distinct factors of given length occurring in it has been
widely used and known as its complexity. A refinement of this notion amounts to
restrict the factors to palindromes. The motivations for the study of palindromic
complexity comes from many areas ranging from the study of Schrödinger opera-
tors in physics [1, 4, 12] to number theory [3] and combinatorics on words where
it appears as a powerful tool for understanding the local structure of words.
It has been recently studied in various classes of infinite words, an account of
which may be found in the survey provided by Allouche et al. [2].

In particular, the palindromic factors give an insight on the intrinsic struc-
ture, due to its connection with the usual complexity, of many classes of words.
For instance, they completely characterize Sturmian words [15], and for the class
of smooth words they provide a connection with the notion of recurrence [7, 8].
Droubay, Justin and Pirillo [10] noted that the palindrome complexity |Pal(w)|
of a word w is bounded by |w|+ 1, and that finite Sturmian (and even epistur-
mian) words realize the upper bound. Moreover they show that the palindrome
∗with the support of NSERC (Canada)
†Corresponding author.



complexity is computed by a linear algorithm listing the longest palindromic
suffixes that are uni-occurrent.

Words that realize that bound are called full in Brlek et al. [6]. In that paper
it is also shown that there exist periodic full words, and an optimal algorithm is
provided to check if an infinite periodic word is full or not. Moreover, a charac-
terization by means of a rational language is given for the language LP of words
whose palindromic factors belong to a fixed and finite set P of palindromes.
A finite automaton recognizing LP is then easy to obtain, and consequently,
if there exists a recurrent infinite word having P for palindromic factors, then
there exist a periodic one sharing exactly the same palindromic factors. Further-
more, by using a representation of periodic words by circular words, a geometric
characterization of those having an infinite set of palindromic factors, as well as
those having a finite one, is furnished. More precisely, an infinite periodic word
w = wω, where w is primitive, has an infinite set of palindromes if and only
if w is the product of two palindromes. Consequently the periodic words hav-
ing a finite set of palindromes are the words whose smallest periodic pattern is
asymmetric. An enumeration formula for asymmetric words was also provided.
Still in [6], the authors considered the defect D(w) = |w|+ 1− |Pal(w)| of finite
words, and showed in particular that for any k ∈ N there exist periodic words
having finite defect k.

In this paper, we study in more details the palindromic defect of infinite
words. For that purpose, in Section 2 we recall from Lothaire’s book [13] the
basic terminology on words. Section 3 is devoted to the study of conjugate mor-
phisms and contains some technical lemmas about their fixed points and palin-
dromic structure. In Section 4 we borrow from Brlek et al. [6] the necessary
definitions and results about the palindromic defect, full words and construc-
tions on periodic infinite words. In section 5, we study the lacunas of words
that are not full, and show in Section 6 that the Thue-Morse word t is lacunary.
Moreover we give an explicit formula for lacunas of t.

2 Definitions and notation

We borrow from M. Lothaire [14] the basic terminology about words. In what
follows, Σ is a finite alphabet whose elements are called letters. By word we mean
a finite sequence of letters w : [0..n − 1] −→ Σ, where n ∈ N. The length of w
is |w| = n and w[i] or wi denote its i-th letter. The set of n-length words over
Σ is denoted Σn. By convention, the empty word is denoted ε and its length
is 0. The free monoid generated by Σ is defined by Σ∗ =

⋃
n≥0 Σn. The set of

right infinite words is denoted by Σω and we set Σ∞ = Σ∗ ∪Σω. Given a word
w ∈ Σ∞, a factor f of w is a word f ∈ Σ∗ satisfying

∃x ∈ Σ∗,∃y ∈ Σ∞, w = xfy.

If x = ε (resp. y = ε ) then f is called prefix (resp. suffix). The set of all factors
of w is denoted by Fact(w), those of length n is Factn(w) = Fact(w) ∩ Σn,
and Pref(w) is the set of all prefixes of w. The number of occurrences of a



factor f ∈ Σ∗ is |w|f . A period of a word w is an integer p < |w| such that
w[i] = w[i+ p], for all i < |w| − p. An infinite word w is recurrent if it satisfies
the condition u ∈ Fact(w) =⇒ |w|u = ∞ . If w = pu, with |w| = n and
|p| = k, then p−1w = w[k..n − 1] = u is the word obtained by erasing p. A
word is said to be primitive if it is not a power of another word. Two words u
and v are conjugate when there are words x, y such that u = xy and v = yx.
The conjugacy class of a word w is denoted by (w); note that the length is
invariant under conjugacy. Moreover, the reversal of u = u0u1 · · ·un−1 ∈ Σn

is the word ũ = un−1un−2 · · ·u0. A palindrome is a word p such that p = p̃ ,
and for a language L ⊆ Σ∞, the set of its palindromic factors is denoted by
Pal(L). Every word contains palindromes, the letters and ε being necessarily
part of them. This justifies the introduction of the function LPS : Σ∗ −→ Σ∗

which associates to any word w its longest palindromic suffix LPS(w).
A morphism is a function ϕ : Σ∗ −→ Σ∗ compatible with concatenation, that

is, such that ϕ(uv) = ϕ(u)ϕ(v) for all u, v ∈ Σ∗. A morphism ϕ is primitive if
∀α ∈ Σ, ϕk(α) contains each letter of Σ for some k. For α ∈ Σ we call ϕ-block
(block for short if no confusion arises) a factor of the form ϕ(α). A morphism is
called uniform when the blocks have equal lengths. Clearly, every infinite fixed
point of a primitive morphism is recurrent, and there exist recurrent but non-
periodic words, the Thue-Morse word t [18], and the Sturmian words being some
of these. The mirror-image of a morphism ϕ, denoted by ϕ̃, is the morphism
such that ϕ̃(α) = ϕ̃(α) for all α ∈ Σ. It is easy to check that

ϕ̃(w) = ϕ̃(w̃) for all w ∈ Σ∗; ϕ̃ ◦ µ = ϕ̃ ◦ µ̃. (1)

Recall from Lothaire [14] (Section 2.3.4) that ϕ is right conjugate of ϕ′, noted
ϕ / ϕ′, if there exists u ∈ Σ∗ such that

ϕ(α)u = uϕ′(α), for all α ∈ Σ, (2)

or equivalently that ϕ(x)u = uϕ′(x), for all words x ∈ Σ∗. Clearly, this relation
is not symmetric so that we say that two morphisms ϕ and ϕ′ are conjugate,
noted ϕ ./ ϕ′, if ϕ / ϕ′ or ϕ′ / ϕ. It is easy to see that conjugacy of morphisms
is an equivalence relation.

3 Preliminaries

From Lothaire [13] we borrow the following useful result: if w = xy = yz, then,
for some u, v, and some i ≥ 0 we have

x = uv, y = (uv)iu, z = vu; (3)

We start by extending Lemma 5 of [6].

Lemma 1 Assume that w = xy = yz. Let u, v and i ≥ 0 be such that Eq. 3
holds. Then the following conditions are equivalent :



(i) x = z̃ ;

(ii) u and v are palindromes;

(iii) w is a palindrome;

(iv) xyz is a palindrome.

Moreover, if one of the equivalent conditions above holds then

(v) y is a palindrome.

Proof. To establish the equivalences we proceed as follows. (i) =⇒ (ii) Since
uv = x = z̃ = ũ ṽ, we have u = ũ and v = ṽ. (ii) =⇒ (iii) We have w = xy =
(uv)i+1u. Then, w̃ = ũ(ṽ ũ)i+1 = u(vu)i+1 = (uv)i+1u = w. (iii) =⇒ (iv) We
have xy = w = w̃ = z̃ ỹ. Then, y = ỹ, x = z̃ and x̃yz = z̃ ỹ x̃ = xyz. (iv) =⇒ (i)
Since |x| = |z| we have x = z̃.

Note that condition (v) above is not equivalent to the conditions (i)-(iv) in
Lemma 1, as shown by the following example. Let y = aba, x = abaab and
z = ababa. The equality xy = yz holds, y is a palindrome but x 6= z̃. In fact,
the crucial point is the fact that |y| < |x|, which corresponds to i = 0 in Eq. (3).
However, if |y| ≥ |x|, that is if i > 0, then (v) =⇒ (ii): indeed, if y is a
palindrome, then (uv)iu = y = ỹ = ũ(ṽ ũ)i = (ũ ṽ)iũ; hence, u = ũ and v = ṽ
since i > 0. We have thus proved:

Lemma 2 Assume that w = xy = yz with |y| ≥ |x|. Then, conditions (i)-(v)
in Lemma 1 are equivalent.

Lemma 3 Let ϕ and ϕ′ be two morphisms on Σ = {a, b} such that ϕ / ϕ′.
i.e. ϕ(α)u = uϕ′(α) for all α ∈ Σ. Let p = |ϕ(a)| and q = |ϕ(b)|. If |u| ≥
p+ q − gcd(p, q), then ϕ and ϕ′ both have periodic fixed points.

Proof. Assume that there exists u ∈ Σ∗ such that ϕ(a)u = uϕ′(a) and ϕ(b)u =
uϕ′(b). From Equations (3), there exist x, z ∈ Σ∗, i ∈ N such that ϕ(a) = xz,
u = (xz)ix and ϕ′(a) = zx. Also, there exist w, y ∈ Σ∗, j ∈ N such that
ϕ(b) = wy, u = (wy)jw and ϕ′(b) = yw. Then, (xz)ix = u = (wy)jw and
hence, p = |ϕ(a)| = |xz| and q = |ϕ(b)| = |wy| are periods of u. The theorem of
Fine and Wilf [14] says that gcd(p, q) is a period of u. It follows that ϕ(a) and
ϕ(b) are powers of the same word since they are prefixes of u, and ϕ′(a) and
ϕ′(b) also since they are suffixes of u.

The next Lemma extends the Lemma 2.3.17 of Lothaire [14].

Lemma 4 Let ϕ, ϕ′, µ, µ′ be morphisms. Then the following conditions hold:

(i) if ϕ / ϕ′ and µ / µ′, then ϕ ◦ µ / ϕ′ ◦ µ′.

(ii) if ϕ / ϕ′ and µ / µ′, then ϕ ◦ µ′ ./ ϕ′ ◦ µ.

(iii) if ϕ ./ ϕ′ and µ ./ µ′, then ϕ ◦ µ ./ ϕ′ ◦ µ′.



Proof. (i) There exist u, v ∈ Σ∗ such that ϕ(α)u = uϕ′(α) and µ(α)v = vµ′(α),
for all α ∈ Σ. We compute

ϕ ◦ µ(α) · uϕ′(v) = ϕ ◦ µ(α) · ϕ(v)u
= ϕ(µ(α) · v)u
= uϕ′(v · µ′(α))
= uϕ′(v) · ϕ′ ◦ µ′(α).

(ii) There exist u, v ∈ Σ∗ such that ϕ(α)u = uϕ′(α) and µ(α)v = vµ′(α), for all
α ∈ Σ. If |u| ≤ |ϕ(v)|, then u−1ϕ(v) = ϕ′(v)u−1 and we obtain

u−1ϕ(v) · ϕ ◦ µ′(α) = u−1ϕ(v · µ′(α))
= ϕ′(µ(α) · v)u−1

= ϕ′ ◦ µ(α) · ϕ′(v)u−1

= ϕ′ ◦ µ(α) · u−1ϕ(v),

that is, ϕ′ ◦ µ / ϕ ◦ µ′. If |u| ≥ |ϕ(v)|, then

ϕ ◦ µ′(α) · ϕ(v)−1u = ϕ(v)−1ϕ(v) · ϕ ◦ µ′(α) · uu−1 · ϕ(v)−1u

= ϕ(v)−1 · ϕ(vµ′(α))u · u−1ϕ(v)−1u

= ϕ(v)−1 · uϕ′(µ(α)v) · (ϕ(v)u)−1u

= ϕ(v)−1u · ϕ′ ◦ µ(α) · ϕ′(v)(uϕ′(v))−1u

= ϕ(v)−1u · ϕ′ ◦ µ(α),

that is, ϕ ◦ µ′ / ϕ′ ◦ µ. (iii) The result follows from (i) and (ii).

Lemma 5 Let ϕ and ϕ′ be two uniform morphisms. Then ϕ / ϕ′ if and only if
there exists x, and for each α ∈ Σ there exists zα such that

ϕ(α) = xzα and ϕ′(α) = zαx. (4)

Proof. (⇒) Assume that there exists u ∈ Σ∗ such that for all α ∈ Σ, ϕ(α)u =
uϕ′(α). From Equations (3), there exist xα, zα ∈ Σ∗, iα ∈ N such that ϕ(α) =
xαzα, u = (xαzα)iαxα and ϕ′(α) = zαxα. To show that the choice of xα is
independent from α, we proceed as follows. Assume that there are two such
letters, say α and α′. We have for some integers i and i′,

(xαzα)ixα = u = (xα′zα′)i
′
xα′ .

Since the morphisms are uniform, it follows that |xαzα| = |xα′zα′ |, so that i = i′,
|xα| = |xα′ |, and hence xα = xα′ .

(⇐) We have ϕ(α)x = xzαx = xϕ′(α).

The lemma above does not hold for some non-uniform morphisms. Consider
the conjugate morphisms ϕ1 : a 7→ abaab, b 7→ ab, ϕ2 : a 7→ baaba, b 7→ ba,
ϕ3 : a 7→ aabab, b 7→ ab and ϕ4 : a 7→ ababa, b 7→ ba. The pairs (ϕ1, ϕ3) and
(ϕ3, ϕ4) both satisfy Equation 4, but the pair (ϕ1, ϕ4) does not. That is why
the following result and especially its corollary are more general than Lemma 3
in [2].



Proposition 1 Let ϕ and ϕ′ be two primitive morphisms, and let u = ϕ(u),
v = ϕ′(v) be two respective fixed points. The following properties hold :

(i) If ϕ / ϕ′, then Fact(u) = Fact(v).

(ii) If ϕ′ = ϕ̃, then Pal(u) = Pal(v).

Proof. (i) By hypothesis and from Lemma 4 (i), for all k there exists w such
that ϕk(α)w = wϕ′k(α) for all α ∈ Σ. First, we show that ϕk(α)w is a factor
of both u and v. Since ϕ is primitive, there exist x ∈ Σ∗, z ∈ Σω such that
u = xαz. We have

u = ϕk(x) · ϕk(α) · ϕk(z) = ϕk(x) · ϕk(α) · wϕ′k(z).

Therefore, ϕk(α)w is factor of u. Similarly, there exist x ∈ Σ∗, z ∈ Σω such
that v = xαz. Then we have

wv = wϕ′k(x) · ϕ′k(α) · ϕ′k(z) = ϕk(x)w · ϕ′k(α) · ϕ′k(z).

We can choose x long enough in order to satisfy |ϕk(x)| ≥ |w|. Therefore,
wϕ′k(α) is factor of v. Finally, let f ∈ Fact(u). Then there exists n such that
f ∈ ϕn(u0). Therefore, f ∈ Fact(v). By the same argument, factors of v occur
in u.

(ii) We have f ∈ Fact(u), that is, f ∈ Fact(ϕn(α)) for some n ∈ N and

α ∈ Σ, or equivalently f̃ ∈ Fact(ϕ̃n(α)) = Fact(ϕ̃n(α)), that is f̃ ∈ Fact(v). It
follows that Pal(u) = Pal(v).

There are morphisms, like ϕ : a 7→ ba, b 7→ ab, having no fixed point. That
is why the following result is useful.

Corollary 1 Let ϕ and ϕ′ be two primitive morphisms and suppose there are
integers k, l such that ϕk and ϕ′l have u = ϕk(u) and v = ϕ′l(v) as fixed points.
Then the following properties hold :

(i) if ϕ ./ ϕ′, then Fact(u) = Fact(v).

(ii) if ϕ′ = ϕ̃, then Pal(u) = Pal(v).

Proof. If ϕ ./ ϕ′, then ϕkl ./ ϕ′kl from Lemma 4. If ϕ′ = ϕ̃, then ϕ′kl = ϕ̃kl =
ϕ̃kl. Since u = ϕkl(u) and v = ϕ′kl(v), the result follows from Proposition 1.

By setting ϕ′ = ϕ in Proposition 1 one obtains

Corollary 2 Let ϕ be a primitive morphism, and let u = ϕ(u), v = ϕ(v) be
two fixed points. Then, Fact(u) = Fact(v).



4 Defect

Recall that Droubay, Justin and Pirillo showed in [10] that for any finite word
w of length n, its palindromic complexity |Pal(w)| is bounded by n+1, and that
Sturmian and also episturmian words realize the bound. Brlek et al. defined in
[6], the palindromic defect of w to be

D(w) = |w|+ 1− |Pal(w)|. (5)

If D(w) = 0, that is when w contains a maximal number of palindromic factors,
then w is said full. The next statements follow easily from the definition.

Lemma 6 Let u, v ∈ Σ∗ be such that u ∈ Fact(v), and let α ∈ Σ. Then we have

(i) D(u) = D(ũ);

(ii) D(u) ≤ D(uα), and D(u) ≤ D(αu);

(iii) D(u) ≤ D(v);

(iv) if v is full then u is full.

Proof. (i) By definition Pal(u) = Pal(ũ). (ii) We have Pal(u) ⊆ Pal(uα), and
therefore |Pal(uα)| − |Pal(u)| ≤ 1 = |uα| − |u|. It follows that |u| − |Pal(u)| ≤
|uα| − |Pal(uα)|, so that D(u) ≤ D(uα). For the second part, we have D(u) =
D(ũ) ≤ D(ũα) = D(α̃u) = D(αu). (iii) By induction and (ii). (iv) Directly
follows from (iii).

For words generated by conjugate morphisms, we have the following nice
property.

Proposition 2 Let ϕ and ϕ′ be two primitive morphisms and suppose there
are integers k, l such that ϕk and ϕ′l have fixed point, namely u = ϕk(u) and
v = ϕ′l(v). If ϕ and ϕ′ are conjugate, then D(u) = D(v).

Proof. From Corollary 1, we have Fact(u) = Fact(v). Hence,

D(u) = sup{D(w) | w ∈ Fact(u)} = sup{D(w) | w ∈ Fact(v)} = D(v).

Observe that the defect is easily computed with the help of the LPS function.
It goes like this:

Algorithm 1
Input : w ∈ Σ∗ ; Initialization : D := 0 ;
1 : if w 6= ε then
2 : for i := 1 to |w| do
3 : s := LPS(w[1..i]) ;
4 : if s is uni-occurrent in w[1..i] then H[i] := |s|
5 : else H[i] := 0 ;D := D + 1 ;
6 : end if
7 : end for
8 : end if
9 : Return D,H



This algorithm also computes the function H : Σ+ −→ N defined by

H(w)[i] =
{
|LPS(w[0..i])| if LPS(w[0..i]) is uni-occurent,
0 otherwise, (6)

for i such that 0 ≤ i ≤ |w|− 1. For instance, for w = bbaabbabaaba, we have the
following table

i 0 1 2 3 4 5 6 7 8 9 10 11
w b b a a b b a b a a b a
H 1 2 1 2 4 6 4 3 3 0 0 6
D 0 0 0 0 0 0 0 0 0 1 2 2

where the defect is given by the number of 0’s in the table listing the values of
H. In this case we have D(w) = 2.

The sequence of values of H may or not contain null values. When H
vanishes in some position k, the word w is said lacunary and the position k is
called a lacuna. Moreover, we say that w is end-lacunary if k + 1 = |w|. The
word in the example above is lacunary and contains two lacunas, namely at
positions 9 and 10. Note that D and H may be viewed, by virtue of condition
(ii) in Lemma 5, as functions D,H : N × Σ∗ −→ N, D increasing with respect
to N.

It is clear that if k is a lacuna of some word u, that is H(k, u) = 0, then for
all v ∈ Σ∗, we have H(k, uv) = 0. This means that lacunas are preserved by
suffix concatenation. This is no longer true for prefix concatenation as the next
example shows.

Example. Let w = u ·v = aabca ·acbcaacbaa. Then we have the following table
where the lacunas of v are 9, 10, while the lacunas of uv are 4, 5.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
w a a b c a a c b c a a c b a a
H 1 2 1 1 0 0 4 6 3 5 7 9 11 13 15

One might ask whether a relation exists or not between D(uv) and D(u)+D(v).
We have

2 = D(aabca · acbcaacbaa) ≤ D(aabca) +D(acbcaacbaa) = 1 + 2.

However, D(aabca · acbcaacb) = 2 while D(aabca) +D(acbcaacb) = 1 + 0 = 1.
The notion of palindromic defect is extended to infinite words w ∈ Σω by

setting D(w) to be the maximum of the defect of its factors: it may be finite
or infinite. Hence D(w) is also equal to the maximum of the defect of the finite
prefixes of w.

5 Periodic words

We know from [6] that there exist periodic infinite words with a finite number
of palindromes, and consequently there exist infinite words with infinite defect
(equivalently finite words with arbitrarily large defects).



A periodic word may not have both an infinite defect and an infinite palin-
dromic complexity. This is a direct consequence of the following results [6].

Proposition 3 (Theorem 4 [6]) Let w be a primitive word. Then we have the
following equivalent conditions:

(i) w is the product of two palindromes;

(ii) |Pal(wω)| is infinite.

A word satisfying the equivalent conditions of the theorem is called symmetric,
and asymmetric otherwise.

Theorem 1 (Theorem 6 [6]) Let w = uv, with |u| ≥ |v| and u, v ∈ Pal(Σ∗),
be a primitive symmetric word. Then the defect of w = wω is bounded by the
defect of its prefix of length |uv|+ b |u|−|v|3 c.

We exhibit now a few examples showing that the bound is not optimal, but
is not far from being sharp. For instance, let w = u · v = aabaa · bab. Then,
|uv| + b |u|−|v|3 c = |uv|. It is easy now to check that D(aabaa · bab) = 0. More
generally, for any integer k > 1,

D((aabkaa · bab)ω) = D((aabkaa · bab) · aabk) = 0,

showing that there exist an infinite family of full infinite periodic words, a result
in the spirit of that of Droubay, Justin and Pirillo on Sturmian words [10]. If
w = u · v = a2bacaba2 · c, we have b |u|−|v|3 c = 2. But

D(wω) = D((aabacabaa · c) · a).

Consider now the word w = u ·v = ak+1bakcakbak+1 ·c, then b |u|−|v|3 c = b 4k+4
3 c,

We have

D(w) = 1 and D(wω) = D(w · ak+1bak) = D(w · ak) = k + 1.

On the other hand, for w = u · ε = abbabaababba, we have D(w) = 0, but
D(u · abba) = 2. More generally, for w = abka · bk−1aabk−1 · abka which is
palindromic (v = ε) we have for k > 1

D(w) = 0 while D(w · abk−1) = k and D(wω) = k,

so that |w| = |u| = 4k+4 and |abk−1| = k. Note that D((cabac ·faf)ω)=1, and,
on a 2-letter alphabet we also have D((aababbaabbabaa)ω) = 1. These examples
solve the problem of constructing periodic sequences having finite defect value.

Moreover, by taking a convenient periodic sequence having defect value 0,
preceded by w one obtains a non periodic sequence (ultimately periodic indeed)
having defect k, so that we have D(ww · aω) = k. By choosing a convenient
Sturmian infinite word v (they all are full), one easily shows that D(ww.v) = k
as well. Summarizing the preceding discussion we have

Proposition 4 There exist an infinite class of infinite words having a fixed
defect value k ≥ 0.



6 The Thue-Morse word

In this section we fix the alphabet Σ = {a, b}. Recall that the Thue-Morse word
t is the fixed point starting with a of the morphism µ defined by

µ(a) = ab ; µ(b) = ba

Note that t is also a fixed point of the morphism θ = µ2, that is

t = θω(a) = abbabaabbaababba · · ·

where θ : Σ∗ → Σ∗ is defined by θ : a 7→ abba, b 7→ baab. While the complexity
function Ft(n) = |Factn(t)| has been established independently by Brlek [5]
and de Luca and Varricchio [16], the recent interest in palindromic complexity
— see Allouche and al. [2] for a detailed account — begs for a description of
the palindromic structure of t. For instance, the existence of infinitely many
palindromic prefixes in an infinite word u, implies that u is recurrent. This fact
was previously observed in [7] and used in [8] (Prop. 15) in order to show that
some infinite words, namely the so-called smooth infinite words are recurrent.
Since it does not appear explicitely as a statement we provide it here.

Proposition 5 If an infinite word u has infinitely many palindromic prefixes,
then the set of factors Fact(u) is closed under reversal and u is recurrent.

Proof. Let f be a finite factor of u. Then u = xfv for some x ∈ Σ∗ and
v ∈ Σω. By hypothesis there exists a palindromic prefix starting with xf , hence
containing x̃f , showing that Fact(u) is closed under reversal. For the recurrence
property, an extra step is necessary and we proceed by contradiction. Assume
that f is a non recurrent factor of u. Then we can choose x and v such that
f /∈ Fact(v). Let p and q be palindromic prefixes of u such that |p| ≥ |xf |
and |q| ≥ 2|p|. Then p contains both f and f̃ . Moreover p is a suffix of q and,
since |q| ≥ 2|p| ≥ 2|xf |, p is a factor of v, so that f and f̃ are factors of v.
Contradiction.

It is easy to see that t has an infinite palindromic complexity since for all
n ∈ N, tn = θn(a) is a palindrome, so that t has infinitely many palindromic
prefixes. However t is not full as can be seen in the table below, where there
are lacunas at positions 8 and 9.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
w a b b a b a a b b a a b a b b a
H 1 1 2 4 3 3 2 4 0 0 6 8 10 12 14 16

Our goal now is to give a complete characterization of the lacunas in t, and
for that purpose the following definition, equivalent to that of Mignosi [17](see
also Frid [11]), is useful.

Definition 1 We say that v is an ancestor of w with respect to θ if there exist
a proper block-prefix x and a proper block-suffix y such that xwy = θ(v). We
denote by Anc(w) the set of ancestors of w. Moreover, we say that w is centered
(with respect to v) if |x| = |y|.



Let v be an ancestor of w such that xwy = θ(v) as above. Let p, s ∈ Σ∗ such
that w = ps. Then we say that there is a bar line between p and s, written p|θs
(or simply p|s when the context is clear), if there exist v1, v2 ∈ Σ∗ such that
v = v1v2, xp = θ(v1) and sy = θ(v2). We start by listing some useful properties
of t.

Lemma 7 Let u ∈ Pal(t). Then the following conditions hold:

(i) if |u| ≥ 4, then |u| is even;

(ii) if |u| ≥ 4, then all ancestors of u are palindromes and u is centered;

(iii) if |u| = 4, then u has exactly two ancestors;

(iv) if |u| > 4, then u has a unique ancestor.

Proof. (i) Assume by contradiction that there exists a factor u of odd length
such that |u| ≥ 4. Then u = zvz̃ for some word z and some palindrome v of
length 5. But the only possibilities for v over Σ = {a, b} are

aaaaa, aabaa, ababa, abbba, baaab, babab, bbabb, bbbbb

which are not factors of t.
(ii) Let v be an ancestor of u. Then xuy = θ(v) for some words x and y,

with |x|, |y| ≤ 3. Since |u| ≥ 4, there exist letters α and β and a word z such
that u = zαββαz̃. Then there are four possible bar lines :

(a) xz|αββαz̃y, (b) xzα|ββαz̃y, (c) xzαβ|βαz̃y, (d) xzαββ|αz̃y

Cases (b) and (d) cannot happen. Otherwise, we would respectively have a
block beginning with ββ and a block ending with ββ, which is impossible. For
the two remaining cases, we have |xz| ≡ |z̃y| mod 4. Therefore |x| = |y|, since
|x|, |y| ≤ 3.

Now, let xp be the prefix of length 4 of θ(v) and p̃y be the suffix of length
4 of θ(v), where p is some non empty word. The fact that both xp and p̃y are
Thue-Morse blocks implies that they are palindromes as well. Thus p̃y = ỹp.
Moreover, since p is non empty, xp and ỹp must correspond to the same block,
so that x = ỹ. Hence, θ(v) = xux̃ is a palindrome. Finally, θ(v) = θ̃(v) =
θ̃(ṽ) = θ(ṽ). But θ is injective, so v = ṽ is a palindrome.

(iii) The only palindromes of length 4 are abba and baab. It is easy to see
that Anc(abba) = {a, bb} and Anc(baab) = {b, aa}.

(iv) Let α, β, γ ∈ Σ and z ∈ Σ∗ such that u = zγαββαγz̃. From (ii) we
know that |Anc(u)| ≤ 2 (see cases (a) and (c)). Now, if γ = α, then we have
xz|ααββααz̃x̃, which is impossible, since no block begins with αα. If γ = β,
then xzβαβ|βαβz̃x̃, which is also impossible, since no block begins with βαβ.
In both cases |Anc(u)| = 1.

It is now easy to compute the palindromic complexity Pt(n) = |Pal(t) ∩
Factn(t)| of the Thue-Morse using Lemma 7.



Proposition 6 The palindromic complexity Pt(n) of t satisfies the following
recurrence :

(i) Pt(0) = 1, Pt(1) = Pt(2) = Pt(3) = Pt(4) = 2,

(ii) for all n ≥ 2, Pt(2n+ 1) = 0, and

(iii) for all n ≥ 2, Pt(4n) = Pt(4n− 2) = Pt(n) + Pt(n+ 1).

Proof. These results follow from Theorem 9 of [2], but for sake of completeness,
we give here a direct proof. First, by inspection, (i) is satisfied. Part (ii) follows
from Lemma 7(i). To prove (iii), assume that n ≥ 2. We first show that
Pt(4n) = Pt(4n − 2). Let p ∈ Palt(4n − 2). Then by Lemma 7 there exist
a unique u and a unique x of length |x| ∈ {1, 3} such that θ(u) = x̃px. Let
f : Palt(4n− 2)→ Palt(4n), be the function defined by p 7→ x0px0 where x0 is
the first letter of x. Then f is a bijection.

It remains to show that Pt(4n) = Pt(n) + Pt(n + 1). Let p ∈ Palt(4n).
Then by Lemma 7, there exist a unique x and a unique palindrome u such
that x̃px = θ(u), where p is centered, |x| ∈ {0, 2} and |u| ∈ {n, n + 1}. Let
anc : Palt(4n) → Palt(n) ∪ Palt(n + 1) be the function defined by p 7→ u. We
first show that anc is a injection. Indeed, let p, q ∈ Palt(4n) and assume that
anc(p) = anc(q). Then p and q are both centered in θ(anc(p)) = θ(anc(q))
so that p = q. To show that anc is surjective, let u ∈ Palt(n) ∪ Palt(n + 1).
If |u| = n, then u = anc(θ(u)). On the other hand, if |u| = n + 1, then
u = anc(x̃−1θ(u)x−1). The result follows.

A closed formula for Pt(n) is then easily obtained by induction :

Pt(n) =


1 if n = 0,
2 if 1 ≤ n ≤ 4,
0 if n is odd and n ≥ 5,
4 if n is even and 4k + 2 ≤ n ≤ 3 · 4k, for k ≥ 1,
2 if n is even and 3 · 4k + 2 ≤ n ≤ 4k+1, for k ≥ 1.

(7)

Lemma 8 Let w 6= ε be a prefix of t and u be a palindromic suffix of w.
Moreover, suppose that u is the ancestor of a word v 6= ε such that θ(u) = x̃vx,
for some word x, |x| ≤ 3. Then u = LPS(w) if and only if v = LPS(θ(w)x−1).

Proof. The overall situation is depicted in Figure 1.
(⇒) By contradiction, assume that v′ is a palindromic suffix of θ(w)x−1

and |v′| > |v|. Since 4 | |x̃vx|, we have that |v| is even so that |v| ≥ 2 and
|v′| ≥ 3. Moreover, the case |v′| = 3 is impossible : otherwise, we would have
v′ = α3 for some letter α. Therefore, |v′| ≥ 4. From Lemma 7 (ii), v′ is
also centered and has a palindromic ancestor u′ which is a suffix of w. This
means that θ(u′) = x̃v′x is a (palindromic) suffix of θ(w). But |v′| > |v| so that
|θ(u′)| = |x̃v′x| > |x̃vx| = |θ(u)|. Hence |u′| > |u|, contradicting the assumption
that u = LPS(w).

(⇐) Again by contradiction, assume that u′ is a palindromic suffix of w,
|u′| > |u|. Then θ(u′) is a palindromic suffix of θ(w). Moreover, there exists a



w = u

u′

θ(w) = θ(u)
x̃ v x

v′

θ

Figure 1: Schematic representation of the proof of Lemma 8

palindrome v′ such that θ(u′) = x̃v′x. But |u′| > |u|, so that |x̃v′x| = |θ(u′)| >
|θ(u)| = |x̃vx|. Hence |v′| > |v|. This contradicts v = LPS(θ(w)x−1).

Lemma 9 Let w be a prefix of t. Then we have

(i) |LPS(w)| = 1 if and only if |w| = 1 or |w| = 2,

(ii) |LPS(w)| = 3 if and only if |w| = 5 or |w| = 6.

Proof. (i) (⇐) Clearly, LPS(a) = LPS(ab) = 1. (⇒) We show that if |w| ≥ 3,
then |LPS(w)| ≥ 2. For |w| = 3, it is true since LPS(abb) = 2. Now, assume
that |w| ≥ 4 and let α be the last letter of w. Since t is overlap-free, one of
the words in {αα, αβα, αββα} is a suffix of w, where β 6= α is a letter. Hence
|LPS(w)| ≥ 2.

(ii) (⇐) It is easy to see that LPS(abbab) = LPS(abbaba) = 3. (⇒) Let
y be the ancestor of w such that wx = θ(y), for some word x, |x| ≤ 3. By
inspection, if |y| ≤ 3, the only possibilities satisfying |LPS(w)| = 3 are |w| = 5
or |w| = 6. Now, assume that |y| ≥ 4. Let u = LPS(w). Then u ∈ {aba, bab}.
Moreover Anc(aba) = {ab, ba} = Anc(bab). Hence, either ab or ba is a suffix
of y, so that there exists a word s ∈ {bab, baab, aba, abba} that is a suffix of
y. But x̃−1θ(s)x−1 is a palindromic suffix of w as well, and |x̃−1θ(s)x−1| ≥ 6,
contradicting the hypothesis.

Lemma 10 Let w be a prefix of t such that |w| ≥ 8 and let x be a suffix of
θ(w) such that |x| ≤ 3. Then w is end-lacunary if and only if θ(w)x−1 is
end-lacunary.

Proof. (⇒) Let u = LPS(w). Since w is end-lacunary, u is not uni-occurrent
in w so that w = yuzu for some word y and some non empty word z. But
θ(u) is a palindrome, which means that there exists a palindrome v such that
θ(u) = x̃vx. Then we have the situation depicted in the following diagram.
By Lemma 8, v = LPS(θ(w)x−1). Hence, θ(w)x−1 is end-lacunary, since v is
not uniocurrent in θ(w)x−1 = θ(y)x̃vxθ(z)x̃v.

(⇐) Let v = LPS(θ(w)x−1). First, assume that |v| > 4. From Lemmas 7(ii)
and 7(iv), v is centered with respect to a unique palindromic ancestor u, i.e.
x̃vx = θ(u). Therefore, since θ(w)x−1 is end-lacunary, there exist some word y



w = y u z u

θ(w) = θ(y) x̃vx θ(z) θ(u)
x̃ v x

θ

Figure 2: Schematic representation of the proof of Lemma 10

and some non empty word z such that θ(w) = θ(y)x̃vxθ(z)x̃vx and w = yuzu.
Hence u is not uni-occurrent in w. But, from Lemma 8, u = LPS(w). This
means that w is end-lacunary.

Now, assume that |v| ≤ 4. From Lemma 9, we have either |v| = 2 or
|v| = 4. Then, v ∈ {aa, bb, abba, baab}. Moreover, if u is an ancestor of v, then
u ∈ U = {a, b, aa, bb}. From Lemma 8, u = LPS(w). Since |w| ≥ 8, factors
of U have already appeared in w. Hence, u is not uni-occurent in w and w is
end-lacunary.

Remark 1 Lemma 10 can be restated as follows. Let i ∈ N. Then i is a lacuna
of t if and only if all integers in [4i..4i + 3] are lacunas of t. In particular, if
i, j ∈ N and i ≤ j, then all integers in [i..j] are lacunas if and only if all integers
in [4i..4j + 3] are lacunas as well.

An explicit description of the lacunas is given now. For n ∈ N+, let L(n) be
the index where the n-th interval of lacunas start and `(n) be its length.

Theorem 2 The sequences L and ` satisfy the following recurrences :

(i) L(1) = 8 and L(2) = 24, (iii) `(1) = `(2) = 2
(ii) L(n) = 4L(n− 2), for n ≥ 3. (iv) `(n) = 4`(n− 2), for n ≥ 3.

Proof. An easy proof by induction shows that the sequence L is increasing and
that the intervals described by L and ` are pairwise non overlapping.

On the other hand, if we consider the prefix of length 32 of t, the only lacunas
are 8, 9, 24, 25, so that L(1) = 8, L(2) = 24 and `(1) = `(2) = 2. Now, for any
prefix of t of length at least 32, Lemma 10 applies. Therefore, by Remark 1,
[L(i)..L(i)+`(i)−1] is an interval of lacunas if and only if [4L(i)..4L(i)+4`(i)−1]
is also an interval of lacunas.

Closed formulas for L and ` are easily obtained :

L(n) =
{

2n+2, if n is odd,
2n+2 + 2n+1, if n is even.

and

`(n) =
{

2n, if n is odd,
2n−1, if n is even.

The first intervals where lacunas occur are

[8..9], [24..25], [32..39], [96..103], [128..159], [384..415], . . .



7 Concluding remarks

Now, recall from [11] that a morphism ϕ is marked if for every α, β ∈ Σ such that
α 6= β, the first letters and the last letters of ϕ(α) and ϕ(β) are different. From
this definition, we see that some results of section 6 can easily be extended
to uniform marked morphisms ϕ such that ϕ(α) is a palindrome, for every
α ∈ Σ. Obviously, Lemma 7 would have to be stated rather differently, but the
essential part is the uniqueness of the ancestor, which is a simple matter for
uniform marked morphisms (see Remark 3 of [11]). Moreover, it is possible to
provide an algorithm to decide whether a uniform marked morphism generates
full words or not : it suffices to generalize Lemma 10 accordingly. Finally, it
would be easy to deduce from these Lemmas that a fixed point of a uniform
marked morphism is either full or has an infinite defect. More precisely we state
the following conjecture.

Conjecture 1 Let u be the fixed point u = ϕ(u) of a primitive morphism ϕ.
If the defect is such that 0 < D(u) <∞, then u is periodic.

We conclude by suggesting some open problems :
1. It would be interesting to extend the optimal algorithm deduced from

Theorem 6 of [6] (restated in Theorem 1) for computing the defect of an infinite
periodic word to fixed points of primitive morphisms. For this purpose, recall
that in [12], Hof et al. introduced morphisms of class P , i.e. morphisms such
that there exist palindromes p and qα satisfying ϕ(α) = pqα for every α ∈
Σ. They also conjectured that if a fixed point u of a primitive morphism has
infinitely many palindromes, then there exists a morphism ϕ such that either
ϕ or ϕ̃ is of class P and u = ϕ(u). Recently, a constructive proof has been
provided for binary alphabets by Tan [19]. Let u = ϕ(u) be a fixed point of
a morphism ϕ. Does there exist an algorithm for deciding whether u is full or
not ? At first, it would be interesting to provide one for morphisms in class P .
Indeed, from Proposition 2, the algorithm could be extended to any morphism
having a conjugate of class P , and assuming that the Hof-Knill-Simon conjecture
is true (which is the case for the binary alphabet), we would have an algorithm
for any primitive morphism.

2. Is there a better algorithm than Algorithm 1 to compute the defect of a
finite word ? In other words, is Algorithm 1 optimal ?

3. Let f(n, k, d) be the number of words of length n over a k-letter alphabet
having d lacunas. Is it possible to compute f(n, k, d) in an efficient way ?
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[17] F. Mignosi and P. Séébold, If a D0L language is k-power free then it is
circular, Proc. ICALP’93, LNCS 700 (1993) 507–518.

[18] M. Morse and G. Hedlund, Symbolic Dynamics, Amer. J. Math. 60
(1938) 815–866.

[19] B. Tan, Mirror substitutions and palindromic sequences, Theoret. Comput.
Sci. 389:1-2 (2007), 118–124.


