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A. Blondin-Massé, S. Brlek†, A. Garon, S. Labbé
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Abstract

The palindromic defect of a finite word w is defined as D(w) = |w|+
1 − |Pal(w)| where Pal(w) is the set of its palindromic factors. In this
paper we study the problem of computing the palindromic defect of finite
and infinite words. Moreover, we completely describe the palindromic
complexity and the lacunas (the positions where the longest palindromic
suffix is not uni-occurrent) in the Thue-Morse word, showing that there
exist infinite words with infinitely many palindromes but infinite defect.
Finally, we extend the results to f -palindromes, i.e. words w satisfying
w = f(w̃) for some involution f on the alphabet.

Keywords Palindromic complexity, generalized palindromes, defect, Thue-
Morse, lacunary words.

1 Introduction

Among the many ways of measuring the information content of a finite word,
counting the number of distinct factors of given length occurring in it has been
widely used and known as its complexity. A refinement of this notion amounts to
restrict the factors to palindromes. The motivations for the study of palindromic
complexity comes from many areas ranging from the study of Schrödinger opera-
tors in physics [1, 5, 16] to number theory [3] and combinatorics on words where
it appears as a powerful tool for understanding the local structure of words.
It has been recently studied in various classes of infinite words, an account of
which may be found in the survey provided by Allouche et al. [2].

In particular, the palindromic factors give an insight on the intrinsic struc-
ture of many classes of words, due to its connection with the usual complexity.
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For instance, they completely characterize Sturmian words [20], and for the class
of smooth words they provide a connection with the notion of recurrence [9, 10].
Droubay, Justin and Pirillo [13] noted that the palindrome complexity |Pal(w)|
of a word w is bounded by |w|+ 1, and that finite Sturmian (and even epistur-
mian) words realize the upper bound. Moreover they show that the palindrome
complexity is computed by an algorithm listing the longest palindromic suffixes
that are uni-occurrent. Words that realize that bound are called full in Brlek et
al. [8]. In that paper it is also shown that there exist periodic full words, and
an optimal algorithm is provided to check if an infinite periodic word is full or
not. Moreover, a characterization by means of a rational language is given for
the language LP of words whose palindromic factors belong to a fixed and finite
set P of palindromes. A finite automaton recognizing LP is therefore easy to
obtain, and consequently, if there exists a recurrent infinite word having P for
palindromic factors, then there exists a periodic one sharing exactly the same
palindromic factors. Furthermore, by using a representation of periodic words
by circular words, a geometric characterization of those having an infinite set of
palindromic factors, as well as those having a finite one, is furnished. More pre-
cisely, an infinite periodic word w = wω, where w is primitive, has an infinite
set of palindromes if and only if w is the product of two palindromes. Con-
sequently the periodic words having a finite set of palindromes are the words
whose smallest periodic pattern is asymmetric. An enumeration formula for
asymmetric words was also provided. Still in [8], the authors considered the
defect D(w) = |w|+ 1− |Pal(w)| of finite words, and showed in particular that
for any k ∈ N there exist periodic words having finite defect k.

In this paper, we study in more details the palindromic defect of infinite
words, and in particular the case of the Thue-Morse word t defined as the fixed
point starting with a of the morphism µ defined by

µ(a) = ab ; µ(b) = ba

Note that t is also a fixed point of the morphism θ = µ2, that is

t = µω(a) = abbabaabbaababba · · · .

While the complexity function Ft(n) = |Factn(t)| has been established inde-
pendently by Brlek [7] and de Luca and Varricchio [21], the recent interest in
palindromic complexity begs for a description of the palindromic structure of t,
suggesting further study on fixed points of morphisms.

For that purpose, in Section 2 we recall from Lothaire’s book [18] the basic
terminology on words. In Section 3 we borrow from Brlek et al. [8] the necessary
definitions and results about the palindromic defect, full words and construc-
tions on periodic infinite words. In section 4, we study the f -palindromes, and
derive a general bound for its complexity similar to the bound for palindromic
complexity. Finally, in Section 5, we study the f -palindromic lacunas of words
that are not full, and show that the Thue-Morse word t is an infinite word
having an infinite f -palindromic complexity but infinite f -defect. Moreover we
give explicit formulas for its f -lacunas.



2 Definitions and notation

Terminology for words is taken from M. Lothaire [18]. In what follows, Σ is
a finite alphabet whose elements are called letters. By word we mean a finite
sequence of letters w : [0..n − 1] −→ Σ, where n ∈ N. The length of w is
|w| = n and w[i] or wi denote its i-th letter. By convention, the empty word
is denoted ε and its length is 0. The free monoid generated by Σ is defined by
Σ∗ =

⋃
n≥0Σ

n. The set of right infinite words is denoted by Σω and we set
Σ∞ = Σ∗ ∪ Σω. Given a word w ∈ Σ∞, a factor u of w is a word u ∈ Σ∗

satisfying
∃x ∈ Σ∗,∃y ∈ Σ∞, w = xuy.

If x = ε (resp. y = ε ) then u is called prefix (resp. suffix). The set of all factors
of w is denoted by Fact(w), those of length n is Factn(w) = Fact(w) ∩ Σn,
and Pref(w) is the set of all prefixes of w. The number of occurrences of a
factor u ∈ Σ∗ is |w|u. A period of a word w is an integer p < |w| such that
w[i] = w[i+ p], for all i < |w| − p. An infinite word w is recurrent if it satisfies
the condition u ∈ Fact(w) =⇒ |w|u =∞ . If w = pu, with |w| = n and |p| = k,
then p−1w = w[k..n− 1] = u is the word obtained by erasing from w its prefix
p. A word is said to be primitive if it is not a power of another word. Moreover,
the reversal of u = u0u1 · · ·un−1 ∈ Σn is the word ũ = un−1un−2 · · ·u0. A
palindrome is a word p such that p = p̃ , and for a language L ⊆ Σ∞, the set of
its palindromic factors is denoted by Pal(L). Every word contains palindromes,
the letters and ε being necessarily part of them. This justifies the introduction
of the function LPS : Σ∗ −→ Σ∗ which associates to any word w its longest
palindromic suffix LPS(w).

A morphism is a function ϕ : Σ∗ −→ Σ∗ compatible with concatenation,
that is, such that ϕ(uv) = ϕ(u)ϕ(v) for all u, v ∈ Σ∗. The identity morphism
on Σ is denoted IdΣ or Id when the context is clear. A morphism ϕ is primitive
if ∀α ∈ Σ,ϕk(α) contains each letter of Σ for some k. For α ∈ Σ we call
ϕ-block (block for short if no confusion arises) a word of the form ϕ(α). A
morphism is called uniform when the blocks have equal lengths. Clearly, every
infinite fixed point of a primitive morphism is recurrent, and there exist recurrent
but nonperiodic words, the Thue-Morse word t [23], and the Sturmian words
being some of these. The mirror-image of a morphism ϕ, denoted by ϕ̃, is the

morphism such that ϕ̃(α) = ϕ̃(α) for all α ∈ Σ. It is easy to check that

ϕ̃(w) = ϕ̃(w̃) for all w ∈ Σ∗ and ϕ̃ ◦ µ = ϕ̃ ◦ µ̃. (1)

3 Defect

Recall that Droubay, Justin and Pirillo showed in [13] that for any finite word
w of length n, its palindromic complexity |Pal(w)| is bounded by n+1, and that
Sturmian and also episturmian words realize the bound. Brlek et al. defined in
[8], the palindromic defect of w to be

D(w) = |w|+ 1− |Pal(w)|. (2)



If D(w) = 0, that is when w contains a maximal number of palindromic factors,
then w is said full. The next statements follow easily from the definition.

Lemma 1. Let u, v ∈ Σ∗ be such that u ∈ Fact(v), and let α ∈ Σ. Then we
have

(i) D(u) = D(ũ);

(ii) D(u) ≤ D(uα), and D(u) ≤ D(αu);

(iii) D(u) ≤ D(v);

(iv) if v is full then u is full.

Proof. (i) By definition Pal(u) = Pal(ũ). (ii) We have Pal(u) ⊆ Pal(uα), and
therefore |Pal(uα)| − |Pal(u)| ≤ 1 = |uα| − |u|. It follows that |u| − |Pal(u)| ≤
|uα| − |Pal(uα)|, so that D(u) ≤ D(uα). For the second part, we have D(u) =
D(ũ) ≤ D(ũα) = D(α̃u) = D(αu). (iii) By induction and (ii). (iv) Follows
directly from (iii).

Observe that the defect is easily computed with the help of the LPS function
and the characterization of Droubay et al. [13]. It goes like this:

Algorithm 1.
Input : w ∈ Σ∗ ; Initialization : D := 0 ;
1 : if w 6= ε then
2 : for i := 0 to |w| − 1 do
3 : s := LPS(w[0..i]) ;
4 : if s is uni-occurrent in w[0..i] then H[i] := |s|
5 : else H[i] := 0 ;D := D + 1 ;
6 : end if
7 : end for
8 : end if
9 : Return D,H

This algorithm also computes the function H : Σ+ −→ N defined by

H(w)[i] =

{
|LPS(w[0..i])| if LPS(w[0..i]) is uni-occurent,
0 otherwise,

(3)

for all i such that 0 ≤ i ≤ |w| − 1.

Example. For instance, for w = bbaabbabaaba, we have the following table

i 0 1 2 3 4 5 6 7 8 9 10 11
w b b a a b b a b a a b a
H 1 2 1 2 4 6 4 3 3 0 0 6
D 0 0 0 0 0 0 0 0 0 1 2 2

where the defect is given by the number of 0’s in the table listing the values of
H. In this case we have D(w) = 2. ♦



The sequence of values of H may or not contain null values. When H
vanishes in some position k, the word w is said lacunary and the position k is
called a lacuna. Moreover, we say that w is end-lacunary if k+1 = |w|. The word
in the example above is lacunary and contains two lacunas, namely at positions
9 and 10. Observe that the lacunas of w can also be computed from right to
left, the choice here is justified by the computation of lacunas for right infinite
words. Moreover, D and H may be viewed as functions D,H : N × Σ∗ −→ N,
and D is increasing with respect to N by virtue of Lemma 1 (ii). It is clear that
if k is a lacuna of some word u, that is H(k, u) = 0, then for all v ∈ Σ∗, we have
H(k, uv) = 0. This means that lacunas are preserved by suffix concatenation.
This is no longer true for prefix concatenation as the next example shows.

Example. Let w = u ·v = aabca ·acbcaacbaa. Then we have the following table

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
w a a b c a a c b c a a c b a a
H 1 2 1 1 0 0 4 6 3 5 7 9 11 13 15

where the lacunas of v are 9, 10, while the lacunas of uv are 4, 5. ♦
One might ask whether a relation exists or not between D(uv) and D(u)+D(v).
This is not the case since

2 = D(aabca · acbcaacbaa) ≤ D(aabca) +D(acbcaacbaa) = 1 + 2.

However, D(aabca · acbcaacb) = 2 while D(aabca) +D(acbcaacb) = 1 + 0 = 1.

The notion of palindromic defect is extended to infinite words w ∈ Σω by
setting D(w) to be the supremum of the defect of its factors: it may be finite
or infinite. Hence D(w) is also equal to the supremum of the defect of the finite
prefixes of w.

3.1 Periodic words

We know from [8] that there exist periodic infinite words with a finite number
of palindromes, and consequently there exist infinite words with infinite defect
(equivalently finite words with arbitrarily large defects).

A periodic word may not have both an infinite defect and an infinite palin-
dromic complexity. This is a direct consequence of the following results [8].

Proposition 1 (Theorem 4 [8]). Let w be a primitive word. Then we have the
following equivalent conditions:

(i) w is the product of two palindromes;

(ii) |Pal(wω)| is infinite.

A word satisfying the equivalent conditions of the theorem is called sym-
metric, and asymmetric otherwise. An immediate consequence is that if w is
symmetric, then the defect of a periodic word wω is necessarily finite. The
following theorem provides an optimal bound.



Theorem 1 (Theorem 6 [8]). Let w = uv, with |u| ≥ |v| and u, v ∈ Pal(Σ∗),
be a primitive symmetric word. Then the defect of w = wω is bounded by the

defect of its prefix of length |uv|+ b |u|−|v|3 c.

We exhibit now a few examples showing that the bound is not far from being

sharp. For instance, let w = u · v = aabaa · bab. Then, |uv| + b |u|−|v|3 c = |uv|.
It is easy now to check that D(aabaa · bab) = 0. More generally, for any integer
k > 1,

D((aabkaa · bab)ω) = D((aabkaa · bab) · aabk) = 0,

showing that there exist an infinite family of full infinite periodic words, a result
in the spirit of that of Droubay, Justin and Pirillo on Sturmian words [13]. If

w = u · v = a2bacaba2 · c, we have b |u|−|v|3 c = 2. But

D(wω) = D((aabacabaa · c) · a).

Consider now the word w = u·v = ak+1bakcakbak+1 ·c. Then b |u|−|v|3 c = b 4k+4
3 c

and we have D(w) = 1 and D(wω) = D(w · ak+1bak) = D(w · ak) = k + 1.
On the other hand, for w = u · ε = a2babba2bbaba2, we have D(w) = 1 and

D(wω) = D(w ·a2ba) = 1. More generally, let u = ak+1babbak+1bbabak+1 where
k ≥ 0. Then w is palindromic) and D(w) = D(wω) = k. This example solves
the problem of constructing both a finite word and an infinite periodic word
having a fixed finite defect value k ≥ 0.

Moreover, by taking a convenient periodic sequence having defect value 0,
preceded by w one obtains a nonperiodic sequence (ultimately periodic indeed)
having defect k, so that we have D(ww · aω) = k. By choosing a conve-
nient Sturmian infinite word v (which is necessarily full), one easily shows that
D(ww.v) = k as well. Summarizing the preceding discussion we have

Proposition 2. Let Σ be an alphabet such that |Σ| ≥ 2 and let k ≥ 0. Then

(i) the language {w ∈ Σ∗ : D(w) = k} is infinite;

(ii) the language {w ∈ Σω : D(w) = k} is infinite.

4 f-palindromes

In this section, we study a natural generalization of palindromes. Let f : Σ → Σ
be an involution which extends to a morphism on Σ∗. A word w ∈ Σ∗ is an
f -pseudo-palindrome [4, 11, 15], or simply an f -palindrome [17], if w = f(w̃).
Clearly the empty word is an f -palindrome, and the set of all f -palindromes of
a language L ⊆ Σ∞ is noted f -Pal(L). Moreover, for any w ∈ Σ∗, we define
f -Pal(w) = f -Pal(Σ∗)∩ Fact(w). The longest f -palindromic suffix of a word w
is denoted LPPS(f, x).

Examples. The notion of f -palindrome is very rich as shown below.

1. A palindrome on an arbitrary alphabet Σ is an IdΣ-palindrome.



2. Let f be an involution without fixed points. Then each f -palindrome is
of even length: indeed, if an odd-length word is an f -palindrome, then its
central letter is mapped on itself, contradicting the assumption.

3. On a 2-letter alphabet, say Σ = {a, b}, the only nontrivial involution is the
exchange of letters defined by E : a 7→ b, b 7→ a. In this particular case,
that is when |Σ| = 2 and f 6= IdΣ , an f -palindrome of Σ∗ is called an
antipalindrome [17]. The words

ε, ab, ba, abab, aabb, baba, bbaa, abbaab, bababa

are E-palindromes. Note that the length of an antipalindrome is always even.

4. Let w = ak for some k ≥ 0. Then E-Pal(w) = {ε}, that is |E-Pal(w)| = 1,
while Pal(w) = k + 1.

5. Let Σ = {a, b, c} and f be defined by (a 7→ a, b 7→ c, c 7→ b). Let w =
ak.u.ak where u is an f -palindrome such that Alph(u) = {b, c}. Then again
LPPS(ak.u0) = ε. ♦

It is easy to adapt Algorithm 1 for taking into account f -palindromicity:
indeed, it suffices to replace line 3 by

→ 3 : s := LPPS(f, w[0..i]) ;

Therefore, f -palindromic and palindromic complexities share the same bounds.

Proposition 3. Let f : Σ −→ Σ be an involution. Then, for all w ∈ Σ∗, we
have |f -Pal(w)| ≤ |w|+ 1.

Proof. Let p be a nonempty prefix of w. It suffices to show that there exists
at most one f -palindromic suffix of p unioccurrent in p. By contradiction,
assume that there exist two f -palindromic suffixes of p, say u and v, that are
unioccurrent in p, with |u| < |v|. Then v = xu for some nonempty word x.
Therefore, v = f(ṽ) = f(x̃u) = f(ũx̃) = f(ũ)f(x̃) = uf(x̃), so that u is not
unioccurrent in p, contradiction. Thus |f -Pal(w)| ≤ |w|+ 1.

In the proof above, the fact that f is an involution is not used. Therefore the
result remains true for an arbitrary bijection (permutation) on Σ. As a special
case, we have a sharper bound if f has no fixed point.

Corollary 1. Let w be a nonempty word on Σ and f an involution without
fixed point. Then |f -Pal(w)| ≤ |w|.

Proof. Since f has no fixed point, the first letter w0 of w is not an f -palindrome,
so that the longest f -palindromic suffix of w0 is not uni-occurrent in w. Hence
|f -Pal(w)| ≤ |w|.

In view of Example 5 above, we also have the following property.



Corollary 2. Let w be a nonempty word on Σ and f 6= Id. If Alph(w) = Σ
then |f -Pal(w)| ≤ |w|.

Proof. Since f 6= Id, there exists at least one letter, say α, which is not a
fixed point of f . Since α ∈ Alph(w), let k be the first occurrence of α. Then
LPPS(w[0..k]) = ε.

Let Σfix be the subset of letters that are fixed by f , i.e. the restriction of f
on Σfix is the identity:

f |Σfix
= IdΣfix

.

Then, as a consequence, a necessary condition for a word w to be f -full is that
Alph(w) ⊆ Σfix, which amounts to check its palindromic fullness.

Given a fixed involution f , we say that w has maximal f -palindromic com-
plexity if there is no word w′ ∈ Σ∗ of the same length such that |f -Pal(w′)| >
|f -Pal(w)|. Indeed, this implies that if f is without fixed point then the bound
is precisely |w|, and |w|+ 1 otherwise.

The problem of characterizing Id-full words seems hard [6, 13, 17]. On
the other hand, it is possible to describe exactly the words having maximal
E-palindromicity.

Proposition 4. Let w be a nonempty word on {a, b}. Then |E-Pal(w)| = |w|
if and only if w = (αβ)n or (αβ)nα for some distinct letters α, β ∈ {a, b} and
n ≥ 1.

Proof. Since E admits no fixed point, Theorem 1 applies, thus |E-Pal(w)| ≤ |w|.
(⇒) It is sufficient to show that for all α ∈ {a, b}, αα does not occur in w.

We proceed by contradiction and assume that αα ∈ Fact(w). We already know
from the proof of Proposition 3 that there is at most one new antipalindrome
at each position and that there is no new antipalindrome at position 1. Let p
be a prefix of w such that either αα or ββ is a suffix of p and |p|αα + |p|ββ = 1,
i.e. p ends with the first occurrence of αα or ββ. Then LPPS(E, p) = ε and
consequently |E-Pal(p) = |p| − 1 so that |E-Pal(w) < |w|.

(⇐) On the one hand, suppose that w = (αβ)n. Then

E-Pal(w) = {ε} ∪ {(αβ)m | 1 ≤ m ≤ n} ∪ {(βα)m | 1 ≤ m ≤ n− 1}.

On the other hand, suppose that w = (αβ)nα. Then

E-Pal(w) = {ε} ∪ {(αβ)m | 1 ≤ m ≤ n} ∪ {(βα)m | 1 ≤ m ≤ n}.

In both cases, |E-Pal(w)| = |w|.

Clearly the set M = {Id, E} of idempotent morphisms on {a, b} forms a
commutative group for the composition of morphisms, and one defines the trans-
position on M by E = Id and Id = E.

Proposition 5. For all f ∈M we have f ◦ E = E ◦ f = f .



5 The Thue-Morse word

Among all binary words, the Thue-Morse word is one of those having very
remarkable palindromic properties. Moreover, there exists an interesting link
between its palindromes and its antipalindromes.

Indeed, one shows easily that t contains infinitely many palindromes and
antipalindromes, since for all odd n, µn(a) is an antipalindromic prefix of t
while for all even n, µn(a) is a palindromic prefix of t. A very convenient way of
studying the structure of those special factors is to represent them as trees (see
Figures 1 and 2). In particular, we notice that they both present a symmetry
axis since the languages Pal(t) and E-Pal(t) are closed under the exchange of
letters involution E.

a

ε

b

bab

aa bb

aba

baab abba

abaaba bbaabb aabbaa babbab

babaabab abbaabba baabbaab ababbaba

bbabaababb babbaabbab abaabbaaba aababbabaa

abbabaababba ababbaabbaba babaabbaabab baababbabaab

aababbaabbabaa bbabaabbaababb

. . . . . .

Figure 1: Palindromic factors of t

However t is not full as can be seen in the table below, where there are
lacunas at positions 8 and 9.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
w a b b a b a a b b a a b a b b a
H 1 1 2 4 3 3 2 4 0 0 6 8 10 12 14 16

The main goal of this section is to give a complete characterization of the
f -lacunas in t, and for that purpose the following definition, equivalent to that
of Mignosi [22](see also Frid [14]), is useful.

Definition 1. We say that v is an ancestor of w with respect to µ if there
exist a proper block-prefix x and a proper block-suffix y such that xwy = µ(v).
We denote by Anc(w) the set of ancestors of w. Moreover, we say that w is
centered (with respect to v) if |x| = |y|.



ε

ab ba

aabb baba abab bbaa

baabba bbabaa aababb abbaab

abbabaab baababba

aabbabaabb babbabaaba abaababbab bbaababbaa

baabbabaabba ababbabaabab babaababbaba abbaababbaab

bbaabbabaabbaa aababbabaababb bbabaababbabaa aabbaababbaabb

. . . . . . . . . . . .

Figure 2: Antipalindromic factors of t

Let v be an ancestor of w such that xwy = µ(v) as above. Let p, s ∈ Σ∗
be such that w = ps. Then we say that there is a bar line between p and s,
written p|µs (or simply p|s when the context is clear), if there exist v1, v2 ∈ Σ∗
such that v = v1v2, xp = µ(v1) and sy = µ(v2). We start by listing some useful
properties of t.

Proposition 6. Let f ∈ {Id, E} and u and v be any words such that µ(v) = u.
Then u is an f -palindrome if and only if v is an f -palindrome.

Proof. We have that u is an f -palindrome if and only if u = f(ũ) if and only if

µ(v) = f(µ̃(v)) = f(E(µ(ṽ))) = µ(f(ṽ)) if and only if v = f(ṽ) if and only if v
is a f -palindrome.

Note that the words u and v are not necessarily factors of t.

Lemma 2. Let u ∈ f -Pal(t). If |u| ≥ 4, then |u| is even.

Proof. It is clear for f = E so that we only have to consider the case f = Id.
Assume by contradiction that such a palindromic factor exists. Then u = zvz̃
for some word z and some palindrome v of length 5. But the only possibilities
for v over Σ = {a, b} are aaaaa, aabaa, ababa, abbba, baaab, babab, bbabb, bbbbb,
which are not factors of t.

Lemma 3. Let u ∈ f -Pal(t). Then the following properties hold.

(i) If |u| is even, then all ancestors v of u with respect to µ are f -palindromes
such that u is centered.

(ii) If |u| ≥ 4, then u has a unique ancestor.



Proof. (i) Let v be an ancestor of u. Then there exist words x and y such that
|x|, |y| ≤ 1 and µ(v) = xuy. First, since |µ(v)| and |u| are both even, it follows
that |x|+ |y| is even, so that |x| = |y|. Hence, u is centered.

We now show that µ(v) is an f -palindrome. If |x| = |y| = 0, then µ(v) = u
and the claim is true. Otherwise, assume that |x| = |y| = 1 and let α be
the first letter of u. Then xα and f(α)y are both µ-blocks. But µ-blocks are
either ab or ba so that x = E(α) and y = E(f(α)) = f(E(α)) = f(x). Hence,
µ(v) = xuf(x), i.e. µ(v) is an f -palindrome. In both cases, we conclude from
Proposition 6 that v is a f -palindrome.

(ii) We know from Lemma 2 that |u| is even. Now, if u contains a square,
i.e. u = u′ααu′′ for some words u′, u′′ and some letter α, then we must have
u′α|αu′′ and all the other bar-lines are determined, so that v is unique. On
the other hand, if there is no square in u and since t is overlap-free, we have
u = αββ whose unique ancestor is αα, for some distinct letters α and β.

Remark 1. It follows from Lemma 3 that the only non empty f -palindromes in t
whose ancestors need not be unique have length 1, 2 or 3. The only possible cases
are a, b, aa, bb, ab, ba, aba and bab and their ancestors are Anc(a) = Anc(b) =
{a, b}, Anc(aa) = {ba}, Anc(bb) = {ab}, Anc(ab) = {a, bb}, Anc(ba) = {b, aa}
and Anc(aba) = Anc(bab) = {aa, bb}.

It is now easy to compute the f -palindromic complexity f -Pt(n) = |f -Pal(t)∩
Factn(t)| of the Thue-Morse sequence for f ∈ {Id, E}.

Proposition 7. The palindromic and E-palindromic complexities of t satisfy
the following recurrences :

(i) Pt(0) = 1, Pt(1) = Pt(2) = Pt(3) = Pt(4) = 2,

(ii) E-Pt(0) = 1, E-Pt(1) = E-Pt(3) = 0, E-Pt(2) = 2, E-Pt(4) = E-Pt(6) =
4, E-Pt(8) = 2

(iii) for all n ≥ 2, f -Pt(2n+ 1) = 0,

(iv) for all n ≥ 3, f -Pt(2n) = f -Pt(n) + f -Pt(n+ 1), and

(v) for all n ≥ 3, f -Pt(4n) = f -Pt(4n− 2) = f -Pt(2n).

Proof. First, by inspection, (i) and (ii) are satisfied. Part (iii) follows from
Lemma 2.

To prove (iv), let p ∈ f -Palt(2n). Then by Lemma 3, there exist a unique
x and a unique f -palindrome u such that f(x̃)px = µ(u), where p is centered,
|x| ∈ {0, 1} and |u| ∈ {n, n+1}. Let Anc : f -Palt(2n)→ f -Palt(n)∪f -Palt(n+1)
be the function defined by p 7→ u. We first show that Anc is injective. Indeed,
let p, q ∈ f -Palt(2n) and assume that Anc(p) = Anc(q). Then p and q are
both centered in µ(Anc(p)) = µ(Anc(q)) so that p = q. To show that Anc is
surjective, let u ∈ f -Palt(n) ∪ f -Palt(n + 1). If |u| = n, then u = Anc(µ(u)).

On the other hand, if |u| = n + 1, then u = Anc(f(x̃−1)µ(u)x−1). Hence Anc
is a bijection and the result follows.



(v) Let p ∈ f -Palt(4n − 2) be an f -palindrome. Then there exist a unique
u and a unique x, |x| ≤ 1, such that µ(u) = xpf(x̃) and |µ(u)| = 4n. Let
g : Palt(4n− 2)→ Palt(4n), be the function defined by p 7→ xpf(x̃). Clearly, g
is a bijection.

Finally, by (iv), we have f -Pt(4n) = f -Pt(2n) + f -Pt(2n + 1), and by (iii),
we conclude that f -Pt(4n) = f -Pt(2n).

Closed formulas for Pt(n) and E-Pt(n) are easily obtained by induction :

Pt(n) =





1 if n = 0,
2 if 1 ≤ n ≤ 4,
0 if n is odd and n ≥ 5,
4 if n is even and 4k + 2 ≤ n ≤ 3 · 4k, for k ≥ 1,
2 if n is even and 3 · 4k + 2 ≤ n ≤ 4k+1, for k ≥ 1.

(4)

E-Pt(n) =





1 if n = 0,
0 if n is odd,
2 if n = 2,
4 if n is even and 2 · 4k + 2 ≤ n ≤ 6 · 4k, for k ≥ 0,
2 if n is even and 6 · 4k + 2 ≤ n ≤ 2 · 4k+1, for k ≥ 0.

(5)

Lemma 4. Let w 6= ε be a prefix of t and u be an f -palindromic suffix of
w. Let v 6= ε and x be words such that µ(u) = f(x̃)vx and |x| ≤ 1. Then
u = LPPS(f, w) if and only if v = LPPS(f, µ(w)x−1).

Proof. The overall situation is depicted in Figure 3.

w = u

u′

µ(w) = µ(u)

f(x̃) v x

v′

µ

Figure 3: Schematic representation of the proof of Lemma 4

(⇒) By contradiction, assume that v′ is a f -palindromic suffix of µ(w)x−1

and |v′| > |v|. Since |f(x̃)vx| is even, it follows that |v| is even as well so that
|v| ≥ 2 and |v′| ≥ 3. Moreover, the case |v′| = 3 is impossible: otherwise, we
would have v′ = α3 for some letter α. Therefore, |v′| ≥ 4 and, by Lemma 3, v′ is
also centered and has an f -palindromic ancestor u′ which is a suffix of w. This
means that µ(u′) = f(x̃)v′x is a f -palindromic suffix of µ(w). But |v′| > |v| so
that |µ(u′)| = |f(x̃)v′x| > |f(x̃)vx| = |µ(u)|. Hence |u′| > |u|, contradicting the
assumption that u = LPPS(f, w).

(⇐) Again by contradiction, assume that u′ is an f -palindromic suffix of
w, |u′| > |u|. Then µ(u′) is a f -palindrome suffix of µ(w). Moreover, there



exists a f -palindrome v′ such that µ(u′) = f(x̃)v′x. But |u′| > |u|, so that
|f(x̃)v′x| = |µ(u′)| > |µ(u)| = |f(x̃)vx|. Hence |v′| > |v|. This contradicts
v = LPPS(f, µ(w)x−1).

Lemma 5. Let w be a prefix of t. Then we have

(i) |LPS(w)| = 1 if and only if |w| = 1 or |w| = 2,

(ii) |LPS(w)| = 3 if and only if |w| = 5 or |w| = 6.

Proof. (i) (⇐) Clearly, |LPS(a)| = |LPS(ab)| = 1. (⇒) We show that if |w| ≥ 3,
then |LPS(w)| ≥ 2. For |w| = 3, it is true since |LPS(abb)| = 2. Now, assume
that |w| ≥ 4 and let α be the last letter of w. Since t is overlap-free, one of
the words in {αα, αβα, αββα} is a suffix of w, where β 6= α is a letter. Hence
|LPS(w)| ≥ 2.

(ii) (⇐) It is easy to see that |LPS(abbab)| = |LPS(abbaba)| = 3. (⇒)
Let y be the word such that wx = µ2(y), for some word x, |x| ≤ 3. By
inspection, if |y| ≤ 4, the only possibilities satisfying |LPS(w)| = 3 are |w| = 5
or |w| = 6. Now, assume that |y| ≥ 5. Then one palindrome p among µ2(αα),
µ2(αβα) and µ2(αββα) is a suffix of wx, for some distinct letters α and β.

If p ∈ {µ2(αβα), µ2(αββα)}, then x̃−1px−1 is a palindromic suffix of w, but

|x̃−1px−1| ≥ 6. Now, if p = µ2(αα), then the suffix of length 3 of w is in
{βαα, ααβ, αββ, ββα}, i.e. |LPS(w)| 6= 3.

Lemma 6. Let w be a prefix of t such that |w| ≥ 8 and let x be a suffix of
µ(w) such that |x| ≤ 1. Then w is f -end-lacunary if and only if µ(w)x−1 is
f -end-lacunary.

Proof. (⇒) Let u = LPPS(f, w). Since w is end-lacunary, u is not uni-occurent
in w so that w = yuzu for some word y and some non empty word z. But µ(u)
is a f -palindrome, which means that there exists a f -palindrome v such that
µ(u) = f(x̃)vx. Then we have the situation depicted in Figure 4. Moreover, by
Lemma 4, v = LPS(f, µ(w)x−1). Hence, µ(w)x−1 is f -end-lacunary, since v is
not unioccurent in µ(w)x−1 = µ(y)f(x̃)vxµ(z)f(x̃)v.

w = y u z u

µ(w) = µ(y) f(x̃)vx µ(z) µ(u)

f(x̃) v x

µ

Figure 4: Schematic representation of the proof of Lemma 6

(⇐) Let v = LPPS(f, µ(w)x−1). By Lemma 5, |v| is even since |w| ≥
8. Moreover, Lemma 3 implies that v is centered with respect to some f -
palindromic ancestor u, i.e. f(x̃)vx = µ(u). Therefore, since µ(w)x−1 is f -
end-lacunary, there exist some word y and some nonempty word z such that
µ(w) = µ(y)f(x̃)vxµ(z)f(x̃)vx and w = yuzu. Hence u is not uni-occurrent in
w. But, from Lemma 4, u = LPPS(f, w) showing that w is f -end-lacunary.



Remark 2. Lemma 6 can be restated as follows. Let i ≥ 8 be an integer. Then
i is a f -lacuna of t if and only if 2i and 2i+ 1 are f -lacunas of t. In particular,
if i, j ∈ N and 8 ≤ i ≤ j, then all integers in [i..j] are f -lacunas if and only if all
the integers in [2i..2j + 1] are f -lacunas. Applying Lemma 6 twice, we get that
all integers in [i..j] are f -lacunas if and only if all the integers in [4i..4j + 3]
are f -lacunas.

An explicit description of the f -lacunas is given now. For n ∈ N+, let L(n)
(resp. E-L(n)) be the index where the n-th interval of lacunas (resp. E-lacunas)
start and `(n) (resp. E-`(n)) be its length.

Theorem 2. The sequences L, E-L, ` and E-` satisfy the following equations :

(i) E-L(1) = 0, E-L(2) = 2, E-L(3) = 4 and E-L(4) = 12,

(ii) E-`(n) = 1 for n = 1, 2, 3, 4,

(iii) L(n) = 2E-L(n+ 2), for n ≥ 1,

(iv) `(n) = 2E−`(n+ 2), for n ≥ 1,

(v) E-L(n) = 2L(n− 4), for n ≥ 5, and

(vi) E-`(n) = 2`(n− 4), for n ≥ 5.

Proof. Let f ∈ {Id, E}. An easy proof by induction shows that the sequence
f -L is increasing and that the intervals described by f -L and f -` are pairwise
nonoverlapping.

On the other hand, if we consider the prefix of length 16 of t, there are no
Id-lacunas but only E-lacunas, which are 0, 2, 4 and 12. Therefore E-L(1) = 0,
E-L(2) = 2, E-L(3) = 4, E-L(4) = 12 and E-`(1) = E-`(2) = E-`(3) = E-
`(4) = 1. Now, for any prefix of t of length at least 16, every lacuna must come
from a shorter prefix by Lemma 6. Therefore, by Remark 2, equations (iii), (iv),
(v) and (vi) hold.

Closed formulas for L, E-L, ` and E-` are easily obtained :

E-L(n) =

{
2n+1, if n is odd,
2n+1 + 2n, if n is even.

L(n) =

{
2n+2, if n is odd,
2n+2 + 2n+1, if n is even.

and

`(n) =

{
2n, if n is odd,
2n−1, if n is even.

E − `(n) =

{
2n−1, if n is odd,
2n−2, if n is even.



Moreover, the first intervals where E-lacunas occur are

[0], [2], [4], [12], [16..19], [48..51], [64..79], [192..207], . . .

and those where Id-lacunas occur are

[8..9], [24..25], [32..39], [96..103], [128..159], [384..415], . . .

The closed formulas above show that the lacunas do not intersect, leading
to the following statement.

Proposition 8. The Id-lacunas intervals and the E-lacunas intervals are pair-
wise disjoint.

6 Concluding remarks

Now, recall from [14] that a morphism ϕ is marked if for every α, β ∈ Σ such that
α 6= β, the first letters and the last letters of ϕ(α) and ϕ(β) are different. From
this definition, we see that some results of Section 5 can easily be extended
to uniform marked morphisms ϕ such that ϕ(α) is a palindrome, for every
α ∈ Σ. Obviously, Lemma 2 would have to be stated rather differently. In fact,
the uniqueness of the ancestor, which is a simple matter for uniform marked
morphisms (see Remark 3 of [14]), is not absolutely necessary. Moreover, it is
possible to provide an algorithm to decide whether a uniform marked morphism
generates full words or not : it suffices to generalize Lemma 6 accordingly.
Finally, it would be easy to deduce from these Lemmas that a fixed point of a
uniform marked morphism is either full or has an infinite defect. More precisely
we state the following conjecture.

Conjecture 1. Let u be the fixed point u = ϕ(u) of a primitive morphism ϕ.
If the defect is such that 0 < D(u) <∞, then u is periodic.

Considering the remarks above, the next step would be to extend the results
of Section 5 to any fixed point of a marked morphism, in order to obtain in-
formation on the f -palindromic complexity and the lacunas of a more general
class of words.

We conclude by suggesting some open problems :
1. It would be interesting to extend the optimal algorithm deduced from

Theorem 6 of [8] (restated in Theorem 1) for computing the defect of an infinite
periodic word to fixed points of primitive morphisms. For this purpose, recall
that in [16], Hof et al. introduced morphisms of class P , i.e. morphisms such
that there exist palindromes p and qα satisfying ϕ(α) = pqα for every α ∈
Σ. They also conjectured that if a fixed point u of a primitive morphism has
infinitely many palindromes, then there exists a morphism ϕ such that either
ϕ or ϕ̃ is of class P and u = ϕ(u). Recently, a constructive proof has been
provided for binary alphabets by Tan [24]. Let u = ϕ(u) be a fixed point of
a morphism ϕ. Does there exist an algorithm for deciding whether u is full or



not ? At first, it would be interesting to provide one for morphisms in class P .
Indeed, the algorithm could be extended to any morphism having a conjugate
of class P , and assuming that the Hof-Knill-Simon conjecture is true (which is
the case for the binary alphabet), we would have an algorithm for any primitive
morphism.

2. Is there a better algorithm than Algorithm 1 to compute the defect of a
finite word ? In other words, is Algorithm 1 optimal ?

3. Let f(n, k, d) be the number of words of length n over a k-letter alphabet
having d lacunas. Is it possible to compute f(n, k, d) in an efficient way ?
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[22] F. Mignosi and P. Séébold, If a D0L language is k-power free then it is
circular, Proc. ICALP’93, LNCS 700 (1993) 507–518.

[23] M. Morse and G. Hedlund, Symbolic Dynamics, Amer. J. Math. 60
(1938) 815–866.

[24] B. Tan, Mirror substitutions and palindromic sequences, Theoret. Comput.
Sci. 389:1-2 (2007), 118–124.


