

Groupe de lecture Mathematical Foundations of Automata Theory, Jean-Éric Pin Chapter VIII: Equations and languages

Manon Stipulanti

FRIA grantee

16 Décembre 2016

0. Quelques rappels du chapitre VI

Soit A un alphabet fini.

Définition (p. 128) : Un monoïde M sépare deux mots $u, v \in A^*$ s'il existe un morphisme de monoïdes $\varphi : A^* \to M$ qui sépare u et v, i.e. tel que $\varphi(u) \neq \varphi(v)$.

Définition (p. 129): On définit une distance ultramétrique d sur A^* : pour tous $u, v \in A^*$,

$$d(u,v) := 2^{-r(u,v)}$$

où $r(u,v) := \min\{|M| \mid M \text{ est un monoïde qui sépare } u \text{ et } v\}.$

Proposition VI.2.4 (p. 129) : (A^*, d) est un espace topologique discret : chaque sous-ensemble de A^* est à la fois ouvert et fermé.

2

Définition (p. 130) : L'ensemble des mots profinis sur A est

$$\widehat{A^*} := A^* \cup \{ \text{limites des suites de Cauchy de } A^* \}.$$

Théorème VI.2.5 (p. 130) : $(\widehat{A^*}, d)$ est un espace topologique compact.

Proposition VI.2.7 (p. 130): Tout morphisme $\varphi: A^* \to M$, où M est un monoïde fini, est uniformément continu et s'étend de manière unique en un morphisme uniformément continu $\widehat{\varphi}: \widehat{A^*} \to M$.

.

But du chapitre VIII (pp. 157–168)

Utiliser les mots profinis pour donner des caractéristiques algébriques de certaines classes de langages reconnaissables.

Des exemples sont donnés au chapitre suivant...

4

1. Équations

Définition: Une équation profinie est un couple de mots profinis (u, v) de \widehat{A}^* . Si $u, v \in A^*$, on parle d'équation explicite.

Soient $u,v\in \widehat{A^*}$ deux mots profinis. Un langage L de A^* satisfait l'équation profinie $u\to v$ (ou $v\leftarrow u$) si l'implication

$$u\in \overline{L} \Rightarrow v\in \overline{L}$$

est vraie, où l'adhérence est prise dans $\widehat{A^*}$.

Exemple : Soient $u,v\in \widehat{A}^*$. Alors le langage vide \emptyset satisfait l'équation profinie $u\to v$ car l'implication

$$u\in\overline{\emptyset}\Rightarrow v\in\overline{\emptyset}$$

est vraie.

5

Proposition VI.3.13 (p. 135) : Soit L un langage reconnaissable de A^* et soit $u \in \widehat{A^*}$ un mot profini. Les conditions suivantes sont équivalentes :

- (1) $u \in \overline{L}$;
- (2) $\widehat{\varphi}(u) \in \varphi(L)$ pour tout morphisme φ de A^* dans un monoïde fini;
- (3) $\widehat{\varphi}(u) \in \varphi(L)$ pour un morphisme φ de A^* dans un monoïde fini qui reconnaît L;
- (4) $\widehat{\eta}(u) \in \eta(L)$ où η est le morphisme syntaxique de L.

Définition (pp. 75–76): Un monoïde N reconnaît un sousensemble L d'un monoïde M s'il existe un morphisme $\varphi: M \to N$ pour lequel $L = \varphi^{-1}(P)$ pour une partie P de N. En utilisant la proposition précédente, on obtient des définitions équivalentes.

Corollaire VIII.1.1 : Soit L un langage reconnaissable de A^* , soit η le morphisme syntaxique de L et soit φ un morphisme de A^* dans un monoïde fini reconnaissant L. Les conditions suivantes sont équivalentes :

- (1) L satisfait l'équation profinie $u \to v$;
- (2) $\widehat{\eta}(u) \in \eta(L)$ implique $\widehat{\eta}(v) \in \eta(L)$;
- (3) $\widehat{\varphi}(u) \in \varphi(L)$ implique $\widehat{\varphi}(v) \in \varphi(L)$.

Preuve:

L satisfait l'équation profinie $u \to v$ ssi $u \in \overline{L}$ implique $v \in \overline{L}$ ssi $\widehat{\eta}(u) \in \eta(L)$ implique $\widehat{\eta}(v) \in \eta(L)$ ssi $\widehat{\varphi}(u) \in \varphi(L)$ implique $\widehat{\varphi}(v) \in \varphi(L)$.

Ш

Les équations se comportent bien par passage au complémentaire.

Proposition VIII.1.2: Soit L un langage reconnaissable de A^* . Alors L satisfait l'équation profinie $u \to v$ si, et seulement si, L^c satisfait l'équation profinie $v \to u$.

Quelques rappels pour prouver ce résultat.

Proposition IV.2.5 (p. 76): Soit $\varphi: M \to N$ un morphisme de monoïdes et soit $L \subseteq M$. Les conditions suivantes sont équivalentes :

- (1) L est reconnu par φ ;
- (2) L est saturé par \sim_{φ} ;
- $(3) \varphi^{-1}(\varphi(L)) = L.$

Proposition IV.2.6 (p. 76) : Soient M un monoïde, P un sous-ensemble de M et $\varphi: M \to N$ un morphisme de monoïdes reconnaissant P.

Alors, pour tout $R \subseteq M$, $\varphi(R - P) = \varphi(P) - \varphi(R)$.

Proposition IV.4.21 (p. 86): La congruence syntaxique de L sature L.

ç

<u>Preuve</u>: On montre tout d'abord que les congruences syntaxiques de L et de L^c sont les mêmes. En effet, pour tous $u, v \in A^*$, on a

$$u \sim_L v \text{ ssi } \forall x, y \in A^* \ (xuy \in L \Leftrightarrow xvy \in L)$$

$$\text{ssi } \forall x, y \in A^* \ (xuy \notin L \Leftrightarrow xvy \notin L)$$

$$\text{ssi } u \sim_{L^c} v.$$

Donc les morphismes syntaxiques de L et de L^c sont égaux. Notons-le η .

Ensuite, on a

$$L \text{ satisfait } u \to v \text{ ssi } \widehat{\eta}(u) \in \eta(L) \Rightarrow \widehat{\eta}(v) \in \eta(L) \quad \text{(corollaire VIII.1.1)}$$

$$\text{ssi } \widehat{\eta}(v) \notin \eta(L) \Rightarrow \widehat{\eta}(u) \notin \eta(L)$$

$$\text{ssi } \widehat{\eta}(v) \in (\eta(L))^c \Rightarrow \widehat{\eta}(u) \in (\eta(L))^c.$$

Par la proposition IV.4.21, la congruence syntaxique de L sature L. Par la proposition IV.2.5, η reconnaît L. Par la proposition IV.2.6, on a

$$\eta(L^c) = \eta(A^* - L) = \eta(A^*) - \eta(L) = (\eta(L))^c.$$

On en tire que

$$L$$
 satisfait $u \to v$ ssi $\widehat{\eta}(v) \in \eta(L^c) \Rightarrow \widehat{\eta}(u) \in \eta(L^c)$
ssi L^c satisfait $v \to u$.

Exemple: Soient $u, v \in \widehat{A}^*$. Alors le langage tout entier A^* satisfait l'équation profinie $u \to v$ car le langage $(A^*)^c = \emptyset$ satisfait l'équation profinie $v \to u$.

11

2. Caractérisation équationnelle des treillis

Définition: Soit E un ensemble d'équations profinies de la forme $u \to v$ avec $u, v \in \widehat{A^*}$. Le sous-ensemble de $\operatorname{Rec}(A^*)$ défini par E est l'ensemble de tous les langages reconnaissables de A^* satisfaisant toutes les équations de E.

Définition: Un treillis de langages de A^* est un ensemble de langages reconnaissables de A^* , contenant le langage vide \emptyset , contenant A^* et stable/fermé pour l'union finie et l'intersection finie.

<u>But</u> : Lier les ensembles définis par un ensemble d'équations profinies et les treillis de langages.

Proposition VIII.2.3: L'ensemble des langages reconnaissables de A^* défini par un ensemble d'équations profinies forme un treillis de langages de A^* .

<u>Preuve</u>: Soit E un ensemble d'équations profinies de la forme $u \to v$ avec $u, v \in \widehat{A}^*$ et soit $\mathcal{L}(E)$ la classe de langages reconnaissables de A^* définie par E. Nous allons montrer que $\mathcal{L}(E)$ est un treillis de langages de A^* .

- (1) $\emptyset \in \mathcal{L}(E)$ Le langage vide \emptyset est reconnaissable. On sait que le langage vide \emptyset satisfait n'importe quelle équation profinie, donc en particulier n'importe quelle équation profinie de E.
- (2) $A^* \in \mathcal{L}(E)$ Le langage A^* est reconnaissable. De la même façon, on sait que le langage A^* satisfait n'importe quelle équation profinie, donc en particulier n'importe quelle équation profinie de E.

(3) Soient $L_1, L_2 \in \mathcal{L}(E)$.

Les langages $L_1 \cup L_2$ et $L_1 \cap L_2$ sont reconnaissables (voir les propositions III.4.8 et III.4.10 pp. 47–48). Montrons que $L_1 \cup L_2$ et $L_1 \cap L_2$ satisfont n'importe quelle équation de E. Soit $u \to v$ une équation de E avec $u, v \in \widehat{A}^*$.

<u>Cas 1</u>: Si $u \notin \overline{L_1 \cup L_2}$ (resp. $u \notin \overline{L_1 \cap L_2}$), alors l'implication

$$u \in \overline{L_1 \cup L_2} \Rightarrow v \in \overline{L_1 \cup L_2}$$

$$(\text{ resp. } u \in \overline{L_1 \cap L_2} \Rightarrow v \in \overline{L_1 \cap L_2})$$

est vraie, ce qui signifie que $L_1 \cup L_2$ (resp. $L_1 \cap L_2$) satisfait l'équation $u \to v$.

$$\underline{\text{Cas } 2}$$
: Supposons que $u \in L_1 \cup L_2$.

Théorème VI.3.15 (p. 136): Les applications $L \mapsto \overline{L}$ et $K \mapsto K \cap A^*$ définissent des morphismes inverses entre les algèbres $\operatorname{Rec}(A^*)$ et $\operatorname{Clopen}(\widehat{A^*})$. De plus, pour tous $L, L_1, L_2 \in \operatorname{Rec}(A^*)$, on a

 $(1) \ \overline{L^c} = (\overline{L})^c;$

(2)
$$\overline{L_1 \cup L_2} = \overline{L_1} \cup \overline{L_2};$$

(3) $\overline{L_1 \cap L_2} = \overline{L_1} \cap \overline{L_2};$

Ainsi,

$$u \in \overline{L_1 \cup L_2} \text{ donc } u \in \overline{L_1} \cup \overline{L_2} \text{ (th\'eor\'eme VI.3.15)}$$

$$\text{donc } u \in \overline{L_1} \text{ ou } u \in \overline{L_2}$$

$$\text{donc } v \in \overline{L_1} \text{ ou } v \in \overline{L_2} \text{ (hypoth\'ese)}$$

$$\text{donc } v \in \overline{L_1} \cup \overline{L_2}$$

$$\text{donc } v \in \overline{L_1} \cup \overline{L_2} \text{ (th\'eor\`eme VI.3.15)}$$

ce qui implique que $L_1 \cup L_2$ satisfait l'équation $u \to v$. Le même raisonnement s'applique dans le cas $u \in \overline{L_1 \cap L_2}$. Au total, $L_1 \cup L_2, L_1 \cap L_2 \in \mathcal{L}(E)$.

Le but est maintenant de montrer que la réciproque de ce résultat est également vraie. Pour cela, on commence par montrer un résultat général sur les langages.

Proposition VIII.2.4: Soient L_1, \ldots, L_n des langages. Si L est un langage satisfaisant toutes les équations explicites satisfaites par L_1, \ldots, L_n , alors L appartient au treillis de langages généré par L_1, \ldots, L_n .

Remarques:

- (1) Ici, par *treillis*, on comprend qu'il s'agit de la même définition que précédemment, sans le caractère reconnaissable des langages.
- (2) Observons que, dans cette proposition, il n'y a pas d'hypothèse sur les langages.

 $\underline{\text{Preuve}}$: Soit \mathcal{T} le treillis de langages généré par L_1,\ldots,L_n . On affirme que

$$L = \bigcup_{I \in \mathcal{I}} \bigcap_{i \in I} L_i$$

où \mathcal{I} est l'ensemble de tous les sous-ensembles I de $\{1,\ldots,n\}$ pour lesquels il existe un mot $v\in L$ tel que $v\in L_i\Leftrightarrow i\in I$. Procédons par double inclusion et posons $R=\bigcup_{I\in\mathcal{I}}\bigcap_{i\in I}L_i$.

 \subseteq : Soit $u \in L$. Posons $I = \{i \in \{1, ..., n\} \mid u \in L_i\}$. Par construction, $I \in \mathcal{I}$ (il suffit de prendre v = u) et $u \in \bigcap_{i \in I} L_i$. Donc $u \in R$.

 \supseteq : Soit $u \in R$. Par définition, il existe un ensemble $I \in \mathcal{I}$ tel que $u \in \bigcap_{i \in I} L_i$ et un mot $v \in L$ tel que $v \in L_i \Leftrightarrow i \in I$. On affirme maintenant que l'équation explicite $v \to u$ est satisfaite par tous les langages L_i avec $i \in \{1, \ldots, n\}$.

 $\underline{\operatorname{Cas}\ 1}$: Supposons que $i\in I.$

Alors $u \in L_i$. L'implication

$$v \in \overline{L_i} \Rightarrow u \in \overline{L_i}$$

est donc vraie, ce qui signifie que L_i satisfait $v \to u$.

 $\underline{\operatorname{Cas}\ 2}$: Supposons que $i \notin I$.

Par définition, $v \notin L_i$. Par la proposition VI.3.12, $v \notin \overline{L_i}$. L'implication

$$v \in \overline{L_i} \Rightarrow u \in \overline{L_i}$$

est donc vraie, ce qui signifie que L_i satisfait $v \to u$.

Proposition VI.3.12 (p. 134) : Si $L \subseteq A^*$, alors $L = \overline{L} \cap A^*$. Les conditions suivantes sont équivalentes :

- (1) L est reconnaissable;
- (2) $L = K \cap A^*$ pour un ouvert-fermé K de $\widehat{A^*}$;
- (3) \overline{L} est un ouvert-fermé de \widehat{A}^* ;
- (4) \overline{L} est reconnaissable dans \widehat{A}^* .

Par hypothèse, L satisfait aussi $v \to u$. Or, comme $v \in L \subseteq \overline{L}$, on en tire que $u \in \overline{L}$. Par la proposition VI.3.12, on a en fait $u \in L$.

On en conclut donc que $L = R = \bigcup_{I \in \mathcal{I}} \bigcap_{i \in I} L_i \in \mathcal{T}$.

20

Une conséquence importante de la proposition précédente est que les treillis finis de langages peuvent être définis par des équations explicites comme le montre le corollaire suivant.

Corollaire VIII.2.5: Un ensemble fini de langages de A^* est un treillis de langages de A^* si, et seulement si, il peut être défini par un ensemble d'équations explicites de la forme $u \to v$ avec $u, v \in A^*$.

<u>Preuve</u>:

 \Rightarrow : Considérons \mathcal{L} un treillis fini de langages (reconnaissables) de A^* et notons E l'ensemble de toutes les équations explicites satisfaites simultanément par tous les langages de \mathcal{L} . On montre que \mathcal{L} est défini par E, i.e. \mathcal{L} est l'ensemble de tous les langages reconnaissables de A^* satisfaisant toutes les équations de E. Notons $\mathcal{L}(E)$ ce dernier ensemble.

Montrons que $\mathcal{L} = \mathcal{L}(E)$ par double inclusion.

 \subseteq : Si $L \in \mathcal{L}$, alors L satisfait toutes les équations explicites de E par construction. Donc $L \in \mathcal{L}(E)$ par définition.

 \supseteq : Si $L \in \mathcal{L}(E)$, alors $L \in \mathcal{L}$ par la proposition VIII.2.4.

Ainsi, \mathcal{L} est défini par E.

 \Leftarrow : Soit E un ensemble d'équations explicites de la forme $u \to v$ avec $u, v \in A^*$. Notons $\mathcal{L}(E)$ l'ensemble de tous les langages reconnaissables de A^* satisfaisant toutes les équations de E. Par la proposition VIII.2.3, on sait que $\mathcal{L}(E)$ est un treillis de langages de A^* .

2:

On peut passer au résultat principal de cette section, à savoir la réciproque de la proposition VIII.2.3.

Théorème VIII.2.6 (Caractérisation équationnelle des treillis de langages): Un ensemble de langages reconnaissables de A^* est un treillis de langages de A^* si, et seulement si, il peut être défini par un ensemble d'équations profinies de la forme $u \to v$ avec $u, v \in \widehat{A^*}$.

$\underline{\text{Preuve}}$:

← : Cela découle directement de la proposition VIII.2.3.

 \Rightarrow : Soit \mathcal{L} un treillis de langages de A^* . Notons E l'ensemble des équations profinies satisfaites simultanément par tous les langages de \mathcal{L} . Nous montrons que \mathcal{L} est défini par E, i.e. $\mathcal{L} = \mathcal{L}(E)$, si on note $\mathcal{L}(E)$ l'ensemble de tous les langages reconnaissables de A^* satisfaisant toutes les équations de E. Procédons par double inclusion.

 \subseteq : Si $L \in \mathcal{L}$, alors L satisfait toutes les équations de E par construction. Donc $L \in \mathcal{L}(E)$ par définition.

 \supseteq : Pour tout langage reconnaissable K de $A^*,$ on pose

$$E_K := \{(u, v) \in \widehat{A}^* \times \widehat{A}^* \mid K \text{ statisfait l'équation profinie } u \to v\}.$$

Fixons maintenant $L \in \mathcal{L}(E)$. Considérons l'ensemble

$$\mathcal{C} := \{ E_L \} \cup \{ E_K^c \mid K \in \mathcal{L} \}.$$

Nous montrons que \mathcal{C} est un recouvrement ouvert de $\widehat{A}^* \times \widehat{A}^*$.

- (1) C est un recouvrement de $\widehat{A}^* \times \widehat{A}^*$. Soit $(u, v) \in \widehat{A}^* \times \widehat{A}^*$.
 - Si $(u, v) \in \bigcup_{K \in \mathcal{L}} E_K^c$, alors $(u, v) \in \mathcal{C}$.
 - Supposons que $(u,v) \notin \bigcup_{K \in \mathcal{L}} E_K^c$. Alors

$$(u,v) \in \left(\bigcup_{K \in \mathcal{L}} E_K^c\right)^c = \bigcap_{K \in \mathcal{L}} (E_K^c)^c = \bigcap_{K \in \mathcal{L}} E_K,$$

ce qui signifie que l'équation profinie $u \to v$ est satisfaite par tous les langages de \mathcal{L} . Par construction, il s'agit d'une équation de E. Puisque $L \in \mathcal{L}(E)$, on en déduit que L satisfait $u \to v$. En particulier, $(u,v) \in E_L$ et donc $(u,v) \in \mathcal{C}$.

(2) C ne contient que des ouverts. Cela découle du lemme suivant.

Lemme VIII.2.7: Pour tout langage reconnaissable K de A^* , E_K est un ouvert-fermé de $\widehat{A}^* \times \widehat{A}^*$.

<u>Preuve</u>: L'ensemble

$$\begin{split} E_K &= \{(u,v) \in \widehat{A^*} \times \widehat{A^*} \mid K \text{ statisfait } u \to v\} \\ &= \{(u,v) \in \widehat{A^*} \times \widehat{A^*} \mid u \in \overline{K} \Rightarrow v \in \overline{K}\} \\ &= \{(u,v) \in \widehat{A^*} \times \widehat{A^*} \mid u \notin \overline{K} \text{ ou } v \in \overline{K}\} \\ &= (\underbrace{\overline{L}^c}_{\text{ouvert-ferm\'e}} \times \widehat{A^*}) \cup (\widehat{A^*} \times \underbrace{\overline{K}}_{\text{ouvert-ferm\'e}}) \end{split}$$

est un ouvert-fermé par la proposition VI.3.12.

Puisque C est un recouvrement ouvert du compact $\widehat{A}^* \times \widehat{A}^*$ (par la proposition VI.2.5), on peut en extraire un recouvrement fini. Sans perte de généralité, on peut supposer que ce recouvrement fini contient E_L (au pire, on a trop d'ouverts) et est égal à

$$\mathcal{C}' = \{E_L\} \cup \{E_{L_1}^c, \dots, E_{L_n}^c\}$$

pour des langages L_1, \ldots, L_n de \mathcal{L} . Il reste à montrer que $L \in \mathcal{L}$. Pour ce faire, on utilise la proposition VIII.2.4.

Soit $u \to v$ une équation profinie avec $u, v \in \widehat{A}^*$. Si cette équation est satisfaite par tous les langages L_1, \ldots, L_n , alors

$$(u,v) \in \bigcap_{i=1}^{n} E_{L_i} = \bigcap_{i=1}^{n} (E_{L_i}^c)^c = \left(\bigcup_{i=1}^{n} E_{L_i}^c\right)^c.$$

Comme C' est un recouvrement, on doit avoir $(u, v) \in E_L$, i.e. L satisfait l'équation $u \to v$.

Ce raisonnement étant valable pour n'importe quelle équation profinie satisfaite simultanément par les langages L_1, \ldots, L_n , on en tire que L satisfait toutes les équations explicites satisfaites par L_1, \ldots, L_n . Par la proposition VIII.2.4, on en déduit que L est dans le treillis des langages générés par L_1, \ldots, L_n . En particulier, $L \in \mathcal{L}$.

Pour terminer la section, on veut obtenir le même lien entre les algèbres de Boole de langages de A^* et les ensembles d'équations profinies.

Définition: Soient $u, v \in \widehat{A^*}$ deux mots profinis. On écrit $u \leftrightarrow v$ pour $u \to v$ et $v \to u$.

Définition: Une algèbre de Boole de langages de A^* est un treillis de langages de A^* stable/fermé pour le passage au complémentaire et distributif (la loi \cup se distribue sur la loi \cap).

Corollaire VIII.2.8 (Caractérisation équationnelle des algèbres de Boole de langages) : Un ensemble de langages reconnaissables de A^* est une algèbre de Boole de langages de A^* si, et seulement si, il peut être défini par un ensemble d'équations profinies de la forme $u \leftrightarrow v$ avec $u, v \in \widehat{A^*}$.

Preuve:

 \Leftarrow : Soit E un ensemble d'équations profinies de la forme $u \leftrightarrow v$ avec $u, v \in \widehat{A}^*$. Notons $\mathcal{A}(E)$ la classe de langages reconnaissables de A^* définie par E. Par le théorème VIII.2.6, $\mathcal{A}(E)$ est un treillis de langages de A^* . Montrons que $\mathcal{A}(E)$ est stable/fermé pour la passage au complémentaire. Soit $L \in \mathcal{A}(E)$ et soit $u \leftrightarrow v$ une équation de E. Alors

L satisfait $u \leftrightarrow v$ ssi L^c satisfait $v \leftrightarrow u$ (proposition VIII.1.2),

ce qui montre que L^c satisfait toutes les équations de E, i.e. $L^c \in \mathcal{A}(E)$.

 \Rightarrow : Soit \mathcal{A} une algèbre de Boole de langages (reconnaissables) de A^* . Par le théorème VIII.2.6, \mathcal{A} est défini par un ensemble E d'équations profinies de la forme $u \to v$ avec $u, v \in \widehat{A}^*$.

Soit $u \to v$ une équation de E et soit $L \in \mathcal{A}$. Alors L et L^c satisfont l'équation $u \to v$. Par la proposition VIII.1.2, on en tire que L satisfait aussi l'équation $v \to u$. Ainsi, l'équation $v \to u$ est satisfaite par tous les langages de \mathcal{A} . Par conséquent, \mathcal{A} peut être défini par un ensemble d'équations profinies de la forme $u \leftrightarrow v$ avec $u, v \in \widehat{A}^*$.

Dans les section suivantes, on particularise le théorème VIII.2.6 et le corollaire VIII.2.8 aux sous-cas suivants:

- les treillis fermés pour les quotients (section 3);
- les courants de langages (section 4);
- les C-courants de langages (section 5);
- les variétés de langages (section 6).

3. Treillis de langages fermés pour les quotients

Définition (p. 37): Soit L un langage de A^* et soit u un mot de A^* . Le quotient à gauche (resp. à droite) de L par u est défini par

$$u^{-1}L = \{v \in A^* \mid uv \in L\}$$

(resp. $Lu^{-1} = \{v \in A^* \mid vu \in L\}$).

Proposition III.4.15 (p. 53): Tout quotient d'un langage reconnaissable est reconnaissable.

Grâce à la proposition précédente, la définition suivante a du sens.

Définition: Une classe \mathcal{L} de langages reconnaissables de A^* est un treillis de langages de A^* fermé pour les quotients si \mathcal{L} est un treillis de langages de A^* et si, pour tout $L \in \mathcal{L}$ et tout $u \in A^*$, $u^{-1}L, Lu^{-1} \in \mathcal{L}$.

Définition : Soient $u,v\in \widehat{A^*}$ deux mots profinis. Un langage L de A^* satisfait l'équation profinie $u\leq v$ si

pour tous mots profinis $x, y \in \widehat{A}^*$, L satisfait l'équation profinie $xuy \to xvy$. On obtient une définition plus simple en utilisant le monoïde syntaxique ordonné.

Définition IV (p. 91): Soit L un langage de A^* , soit M son monoïde syntaxique et soit $\eta: A^* \to M$ son morphisme syntaxique. L'ordre syntaxique \leq_L est l'ordre partiel sur M définit comme suit : $u \leq_L v$ si, et seulement si, pour tous $s, t \in M$, on a

$$sut \in \eta(L) \Rightarrow svt \in \eta(L).$$

Proposition VIII.3.9: Soit L un langage reconnaissable de A^* , soit (M, \leq_L) son monoïde syntaxique ordonné et soit $\eta : A^* \to M$ son morphisme syntaxique. Alors L satisfait l'équation profinie $u \leq v$ avec $u, v \in \widehat{A}^*$ si, et seulement si, $\widehat{\eta}(u) \leq_L \widehat{\eta}(v)$.

Théorème VIII.3.10 (Caractérisation équationnelle des treillis de langages fermé pour les quotients) : Un ensemble de langages reconnaissables de A^* est un treillis de langages de A^* fermé pour les quotients si, et seulement si, il peut être défini par un ensemble d'équations profinies de la forme $u \leq v$ avec $u, v \in \widehat{A^*}$. Idée de la preuve : Même raisonnement que pour le théorème

VIII.2.6.

Définition: Soient $u, v \in \widehat{A}^*$ deux mots profinis. Un langage L de A^* satisfait l'équation profinie u = v s'il satisfait les équations profinies $u \le v$ et $v \le u$.

Proposition VIII.3.11: Soit L un langage reconnaissable de A^* , soit (M, \leq_L) son monoïde syntaxique ordonné et soit η : $A^* \to M$ son morphisme syntaxique. Alors L satisfait l'équation profinie u = v avec $u, v \in \widehat{A^*}$ si, et seulement si, $\widehat{\eta}(u) =_L \widehat{\eta}(v)$. Preuve: Cela découle de la proposition VIII.3.9.

Corollaire VIII.3.12 (Caractérisation équationnelle des algèbres de Boole de langages fermée pour les quotients) : Un ensemble de langages reconnaissables de A^* est une algèbre de Boole de langages de A^* fermée pour les quotient si, et seulement si, il peut être défini par un ensemble d'équations profinies de la forme u=v avec $u,v\in \widehat{A}^*$.

Idée de la preuve : Même raisonnement que pour le corollaire

VIII.2.8.

38

4. Courants de langages

Définition: Une classe de langages reconnaissables est une correspondance \mathcal{F} qui associe, à chaque alphabet fini A, un ensemble $\mathcal{F}(A^*)$ de langages reconnaissables de A^* de manière telle que, si $\sigma: A \to B$ est une bijection, un langage L est dans $\mathcal{F}(A^*)$ si, et seulement si, $\sigma(L)$ est dans $\mathcal{F}(B^*)$.

Il s'ensuit que, si on fixe, pour chaque $n \in \mathbb{N}$, un alphabet $A_n = \{1, \ldots, n\}$, la classe \mathcal{F} est complètement déterminée par la famille $(\mathcal{F}(A_n^*))_{n \in \mathbb{N}}$.

Définition : Un courant positif de langages est une classe de langages reconnaissables V telle que :

- (1) pour tout alphabet A, $\mathcal{V}(A^*)$ est un treillis de langages de A^* ;
- (2) pour tout morphisme de monoïdes $\varphi: A^* \to B^*, X \in \mathcal{V}(B^*)$ implique $\varphi^{-1}(X) \in \mathcal{V}(A^*)$.

Définition: Un courant de langages est un courant positif de langages stable/fermé pour le passage au complémentaire. Cela revient à remplacer (1) dans la définition précédente par

(1') pour tout alphabet A, $\mathcal{V}(A^*)$ est une algèbre de Boole de langages de A^* .

Notation: Dans la suite, pour tout $n \in \mathbb{N}$, on fixe un alphabet fini $A_n = \{1, \dots, n\}$.

Définition: Soient $u, v \in \widehat{A_n^*}$ deux mots profinis. Un langage L de A^* satisfait l'identité profinie $u \to v$ (resp. $u \leftrightarrow v$) si, pour tout morphisme $\gamma: A_n^* \to A^*$, L satisfait l'équation profinie $\widehat{\gamma}(u) \to \widehat{\gamma}(v)$ (resp. $\widehat{\gamma}(u) \leftrightarrow \widehat{\gamma}(v)$).

41

On obtient une définition équivalente.

Proposition VIII.4.13: Soit L un langage reconnaissable de A^* et soit $\varphi: A^* \to M$ un morphisme surjectif dans un monoïde fini M reconnaissant L. Alors L satisfait l'identité profinie $u \to v$ avec $u, v \in \widehat{A_n^*}$ si, et seulement si, pour tout morphisme $\alpha: A_n^* \to M$, $\widehat{\alpha}(u) \in \varphi(L)$ implique $\widehat{\alpha}(v) \in \varphi(L)$.

Théorème VIII.4.14 (Caractérisation équationnelle des courants (positifs) de langages): Une classe de langages reconnaissables de A^* est un courant positif de langages si, et seulement si, il peut être défini par un ensemble d'identités profinies de la forme $u \to v$. Il s'agit d'un courant de langages si, et seulement si, il peut être défini par un ensemble d'identités profinies de la forme $u \leftrightarrow v$.

<u>Idée de la preuve</u> : Même raisonnement que pour le théorème <u>VIII.2.6 et le corollaire VIII.2.8.</u>

Clarification : Les identités profinies définissant un courant (positif) ne sont pas nécessairement toutes sur le même alphabet.

5. C-courants

Définition : Une classe $\mathcal C$ de morphismes est une classe de morphismes entre des monoïdes libres finiment engendrés qui satisfont les propriétés suivantes :

- (1) \mathcal{C} est stable/fermé pour la composition, i.e. si A, B, C sont des alphabets finis et si $f: A^* \to B^*, g: B^* \to C^*$ sont des morphismes de \mathcal{C} , alors $g \circ f: A^* \to C^*$ est dans \mathcal{C} .
- (2) C contient tous les morphismes qui préservent la longueur, i.e. tous les morphismes pour lesquels l'image de chaque lettre est encore une lettre.

Définition: Soit C une classe de morphismes. Un C-courant positif de langages est une classe de langages reconnaissables V telle que :

- (1) pour tout alphabet A, $\mathcal{V}(A^*)$ est un treillis de langages de A^* ;
- (2) si $\varphi: A^* \to B^*$ est un morphisme de $\mathcal{C}, X \in \mathcal{V}(B^*)$ implique $\varphi^{-1}(X) \in \mathcal{V}(A^*)$.

Définition: Soit \mathcal{C} une classe de morphismes. Un \mathcal{C} -courant de langages est un \mathcal{C} -courant positif de langages stable/fermé pour le passage au complémentaire. Cela revient à remplacer (1) dans la définition précédente par

(1') pour tout alphabet A, $\mathcal{V}(A^*)$ est une algèbre de Boole de langages de A^* .

Remarque : Il s'agit de cas particuliers de la section 4.

Définition: Soient $u, v \in \widehat{A_n^*}$ deux mots profinis. Un langage L de A^* satisfait la \mathcal{C} -identité profinie $u \to v$ (resp. $u \leftrightarrow v$) si, pour tout morphisme $\gamma: A_n^* \to A^*$ de \mathcal{C} , L satisfait l'équation profinie $\widehat{\gamma}(u) \to \widehat{\gamma}(v)$ (resp. $\widehat{\gamma}(u) \leftrightarrow \widehat{\gamma}(v)$).

Théorème VIII.5.15 (Caractérisation équationnelle des \mathcal{C} -courants (positifs) de langages): Soit \mathcal{C} une classe de morphismes. Une classe de langages reconnaissables de A^* est un \mathcal{C} -courant positif de langages si, et seulement si, il peut être défini par un ensemble de \mathcal{C} -identités profinies de la forme $u \to v$. Il s'agit d'un \mathcal{C} -courant de langages si, et seulement si, il peut être défini par un ensemble de \mathcal{C} -identités profinies de la forme $u \leftrightarrow v$.

Idée de la preuve : Reprendre la preuve du théorème VIII.5.15 en remplaçant chaque occurrence de "morphisme" par "\$\mathcal{C}\$-morphisme". On observe que la stabilité par composition est vraiment nécessaire.

6. Variétés de langages

Définition : Une variété positive de langages est une classe de langages reconnaissables $\mathcal V$ telle que :

- (1) pour tout alphabet A, $\mathcal{V}(A^*)$ est un treillis de langages de A^* ;
- (2) pour tout morphisme $\varphi: A^* \to B^*, X \in \mathcal{V}(B^*)$ implique $\varphi^{-1}(X) \in \mathcal{V}(A^*)$;
- (2) si $L \in \mathcal{V}(A^*)$ et si $u \in A^*$, alors $u^{-1}L$ et Lu^{-1} sont dans $\mathcal{V}(A^*)$ (stable/fermée pour les quotients).

Définition: Une variété de langages est une variété positive de langages stable/fermée pour le passage au complémentaire. Cela revient à remplacer (1) dans la définition précédente par

(1') pour tout alphabet A, $\mathcal{V}(A^*)$ est une algèbre de Boole de langages de A^* .

47

Définition: Soient $u, v \in \widehat{A_n^*}$ deux mots profinis. Un langage L de A^* satisfait l'identité profinie $u \leq v$ (resp. u = v) si, pour tout morphisme $\gamma: A_n^* \to A^*$, L satisfait l'équation profinie $\widehat{\gamma}(u) \leq \widehat{\gamma}(v)$ (resp. $\widehat{\gamma}(u) = \widehat{\gamma}(v)$).

Théorème VIII.6.16 (Caractérisation équationnelle des variétés (positives) de langages): Une classe de langages reconnaissables de A^* est une variété positive de langages si, et seulement si, il peut être défini par un ensemble d'identités profinies de la forme $u \leq v$. Il s'agit d'une variété de langages si, et seulement si, il peut être défini par un ensemble d'identités profinies de la forme u = v.

<u>Idée de la preuve</u> : Combiner les arguments des preuves des théorèmes VIII.3.10 et VIII.4.14.

Définition : Soit \mathcal{C} une classe de morphismes. Une \mathcal{C} -variété positive de langages est une classe de langages reconnaissables \mathcal{V} telle que :

- (1) pour tout alphabet A, $\mathcal{V}(A^*)$ est un treillis de langages de A^* ;
- (2) si $\varphi: A^* \to B^*$ est un morphisme de $\mathcal{C}, X \in \mathcal{V}(B^*)$ implique $\varphi^{-1}(X) \in \mathcal{V}(A^*)$;
- (2) si $L \in \mathcal{V}(A^*)$ et si $u \in A^*$, alors $u^{-1}L$ et Lu^{-1} sont dans $\mathcal{V}(A^*)$ (stable/fermé pour les quotients).

Définition : Soit \mathcal{C} une classe de morphismes. Une \mathcal{C} -variété de langages est une \mathcal{C} -variété positive de langages stable/fermée pour le passage au complémentaire. Cela revient à remplacer (1) dans la définition précédente par

(1') pour tout alphabet A, $\mathcal{V}(A^*)$ est une algèbre de Boole de langages de A^* .

Définition: Lorsque \mathcal{C} est la classe de tous les morphismes, on retombe sur la définition des variétés (positives) de langages. Lorsque \mathcal{C} est la classe des morphismes qui préservent la longueur (resp. qui multiplient les longueurs, resp. non-effaçants, resp. qui font décroître les longueurs), on utilise le terme lp-variété (resp. lm-variété, resp. ne-variété, resp. ld-variété).

Définition: Soient $u, v \in \widehat{A_n^*}$ deux mots profinis. Un langage L de A^* satisfait la \mathcal{C} -identité profinie $u \leq v$ (resp. u = v) si, pour tout morphisme $\gamma: A_n^* \to A^*$ de \mathcal{C} , L satisfait l'équation profinie $\widehat{\gamma}(u) \leq \widehat{\gamma}(v)$ (resp. $\widehat{\gamma}(u) = \widehat{\gamma}(v)$).

Théorème VIII.6.17 (Caractérisation équationnelle des \mathcal{C} -variétés (positives) de langages) : Soit \mathcal{C} une classe de morphismes. Une classe de langages reconnaissables de A^* est une \mathcal{C} -variété positive de langages si, et seulement si, il peut être défini par un ensemble de \mathcal{C} -identités profinies de la forme $u \leq v$. Il s'agit d'une \mathcal{C} -variété de langages si, et seulement si, il peut être défini par un ensemble de \mathcal{C} -identités profinies de la forme u = v. Idée de la preuve : Combiner les arguments des preuves des

théorèmes VIII.3.10 et VIII.5.15.

7. Le théorème de variété

Dans cette section, on présente un point de vue algébrique différent pour caractériser les variétés de langages, point de vue proposé par Eilenberg en 1976.

Définition (pp. 137–138) : Une variét'e de mono"ides est une classe de mono\"ides ${\bf V}$ telle que

- (1) si $S \in \mathbf{V}$ et si T est un sous-monoïde de S, alors $T \in \mathbf{V}$;
- (2) si $S \in \mathbf{V}$ et si T est un quotient de S, alors $T \in \mathbf{V}$;
- (3) si $(S_i)_{i \in I}$ est une famille finie de monoïdes de \mathbf{V} , alors $\prod_{i \in I} S_i$ est aussi dans \mathbf{V} .

Définition: Si V est une variété de monoïdes finis, on note $\mathcal{V}(A^*)$ l'ensemble de tous les langages reconnaissables de A^* dont le monoïde syntaxique est dans V.

Une définition équivalente est la suivante.

Proposition VIII.7.18 : Si V est une variété de monoïdes finis, $\mathcal{V}(A^*)$ est l'ensemble des langages de A^* reconnus par un monoïde de V.

Définition : La correspondance $V \mapsto \mathcal{V}$ associe, à chaque variété V de monoïdes finis, une classe \mathcal{V} de langages reconnaissables.

Cette correspondance est bijective.

Théorème VIII.7.19: Soient \mathbf{V} et \mathbf{W} deux variétés de monoïdes finis. Supposons que $\mathbf{V} \mapsto \mathcal{V}$ et que $\mathbf{W} \mapsto \mathcal{W}$. Alors $\mathbf{V} \subseteq \mathbf{W}$ si, et seulement si, pour tout alphabet fini $A, \mathcal{V}(A^*) \subseteq \mathcal{W}(A^*)$. En particulier, $\mathbf{V} = \mathbf{W}$ si, et seulement si, $\mathcal{V} = \mathcal{W}$.

Proposition VIII.7.21 : Soit **V** une variété de monoïdes finis. Si $\mathbf{V} \mapsto \mathcal{V}$, alors \mathcal{V} est une variété de langages (au sens de la section 6).

<u>Preuve</u> : Soit \mathbf{V} une variété de monoïdes finis. Montrons que \mathcal{V} est une variétés de langages (au sens de la section 6).

- (1) Soit A un alphabet fini. Montrons que $\mathcal{V}(A^*)$ est une algèbre de Boole de langages.
 - Les langages ∅ et A* sont reconnus par le monoïde trivial qui est dans V. Par la proposition VIII.7.18, ∅, A* sont dans V(A*).
 - Soient $L_1, L_2 \in \mathcal{V}(A^*)$. Alors les monoïdes syntaxiques $M(L_1)$ et $M(L_2)$ sont dans \mathbf{V} par la proposition VIII.7.18. Par la proposition IV.2.9, $L_1 \cup L_2$ et $L_1 \cap L_2$ sont reconnus par $M(L_1) \times M(L_2)$. Puisque \mathbf{V} est une variété de monoïdes, $M(L_1) \times M(L_2) \in \mathbf{V}$. Ainsi, $L_1 \cup L_2, L_1 \cap L_2$ sont dans $\mathcal{V}(A^*)$ par la proposition VIII.7.18.

Proposition IV.2.9: Soient L_1, \ldots, L_n des sous-ensembles d'un monoïde fini M. Si chaque L_i est reconnu par φ_i , alors $\bigcup_{i=1}^n L_i$ et $\bigcap_{i=1}^n L_i$ sont reconnu par leur produit.

• Soit $L \in \mathcal{V}(A^*)$. Alors le monoïde syntaxique M(L) est dans \mathbf{V} par la proposition VIII.7.18. Or $M(L^c) = M(L)$, donc $L^c \in \mathcal{V}(A^*)$ par la proposition VIII.7.18.

(2) Soient A, B deux alphabets finis, $\varphi: A^* \to B^*$ un morphisme et $X \in \mathcal{V}(B^*)$. Par la proposition VIII.7.18, le monoïde syntaxique M(X) est dans \mathbf{V} . Or, par la proposition IV.2.10, M(X) reconnaît $\varphi^{-1}(X)$. Donc $\varphi^{-1}(X) \in \mathcal{V}(A^*)$ par la proposition VIII.7.18.

Proposition IV.2.10 : Soient $\eta: R \to M$ et $\varphi: M \to N$ des morphismes de monoïdes. Si φ reconnaît un sousensemble $L \subseteq M$, alors $\varphi \circ \eta: R \to N$ reconnaît $\eta^{-1}(L)$.

(3) Soient A un alphabet fini, $L \in \mathcal{V}(A^*)$ et $u \in A^*$. Par la proposition VIII.7.18, le monoïde syntaxique M(L) est dans \mathbf{V} . Par la proposition IV.2.11, $u^{-1}L, Lu^{-1}$ sont reconnus par M(L). Donc $u^{-1}L, Lu^{-1} \in \mathcal{V}(A^*)$ par la proposition VIII.7.18.

Proposition IV.2.11 : Soit $\varphi: M \to N$ un morphisme de monoïdes. Si φ reconnaît un sous-ensemble $L \subseteq M$, alors il reconnaît $K^{-1}L, LK^{-1}$ pour tout $K \subseteq M$.

Définition: La correspondance $\mathcal{V} \mapsto \mathbf{V}$ associe, à chaque variété \mathcal{V} de langages (au sens de la section 6), une variété \mathbf{V} de monoïdes générée par les monoïdes syntaxiques de la forme M(L) où $L \in \mathcal{V}(A^*)$ pour un certain alphabet fini A.

Théorème VIII.7.22 (Eilenberg) : Les correspondances $\mathbf{V} \mapsto \mathbf{V}$ et $\mathcal{V} \mapsto \mathbf{V}$ définissent des bijections inverses l'une de l'autre entre des variétés de monoïdes finis et des variétés de langages.

Dans la suite de la section : des théorèmes analogues pour les variétés de monoïdes finis ordonnés et pour les +-variétés d'Eilenberg.

8. Résumé

Équations	Définition	Stable/fermé pour	Section
$u \to v$	$\widehat{\eta}(u) \in \eta(L) \Rightarrow \widehat{\eta}(v) \in \eta(L)$	U, N	2
$u \leftrightarrow v$	$u \to v \text{ et } v \to u$	complémentaire	2
$u \le v$	$\forall x, y \in \widehat{A^*} : xuy \to xvy$	quotients	3
u = v	$u \le v \text{ et } v \le u$	quotients et complémentaire	3

Identités	Définition	Stable/fermé pour	Section
$u \to v$		∪,∩	4
$u \leftrightarrow v$	$u \to v \text{ et } v \to u$	complémentaire	4
$u \le v$	$\forall \gamma: A_n^* \to A^*: \\ \widehat{\gamma}(u) \to \widehat{\gamma}(v)$	quotients	6
u = v	$u \le v \text{ et } v \le u$	quotients et complémentaire	6