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Chapter 1

Introduction

The first conclusion (A1) of the 2023 report of the Intergovernmental Panel on Climate Change
(IPCC, ou GIEC en français) says that [100]:

“Human activities, principally through emissions of greenhouse gases, have unequivo-
cally caused global warming, with global surface temperature reaching 1.1◦C above 1850-
1900 in 2011-2020.”

While also being a source of terrible events1, the usage of oil for combustion engines increases
the quantity of CO2 emission in the atmosphere (see Figure 1.1) with many long-term undesirable
effects on climate change.

Figure 1.1: Atmospheric CO2 levels measured by NOAA at Mauna Loa Observatory, Hawaii, since 1958
indicate that the concentratration went from below 320 parts per million to 427 as of February
2025. The annual rise and fall of CO2 levels is caused by seasonal cycles in photosynthesis on a
massive scale. Image credit: https://climate.nasa.gov/vital-signs/carbon-dioxide/

Among all the way to make carbon return to the soil is the mycorrhizal fungi and its symbiotic
association with a green plant. The plant makes organic molecules from carbon dioxide by photo-
synthesis and supplies them to the fungus in the form of sugars or lipids, while the fungus supplies
the plant with water and mineral nutrients, such as phosphorus, taken from the soil2. Thanks to
this symbiotic association, 13 billion tons of atmospheric carbon dioxide, one-third of fossil-fuel
emissions worldwide, enter the soil each year quietly helping regulate Earth’s climate 3.

To exchange nutrients for carbon molecules, mycorrhizal fungi builds an underground fungal
network following rules shaped by natural selection for over 450 million years. The growth of
these networks, composed of one continuous cytoplasm, was studied recently [225]. The group of

1https://en.wikipedia.org/wiki/Lac-Mégantic_rail_disaster
2https://en.wikipedia.org/wiki/Mycorrhiza
3https://www.nytimes.com/2025/03/01/science/climate-mycorrhizal-fungus-networks.html
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researchers found that mycorrhizal fungi builds a self-regulating network depending on the density
of nutrient in the soil and which root of the plant offers the most carbon. The network grows as a
living algorithm playing an economic trade game while obeying some basic rules. For instance, as
the growing tips progress, the authors observed that new branches form behind them at a steady
rate. Also, when one tip hits another, they fuse and form a loop thus avoiding dead ends. Inside
the network, they observed that the flow of molecules in a tube of the network is often bidirectional
simultaneously. But, the authors write that it is still unclear how flows are modulated across
networks built by mycorrhizal fungi. Does the their global behavior emerges from local rules?

Figure 1.2: Two types of snow crystals among the many others listed in [197]. After living 20 years in
Canada, the author could not believe the existence of capped columns shown on the right until
he saw them with his own eyes for the first time in February 2019 at the Canada familly’s sugar
shack. Image credits:https://www.snowcrystals.com/.

Another domain where local interactions define global structures is the growth of snowflakes.
Why every snowflakes have six branches? Why are two different branches of the same snowflake
the same while any two snowflakes different? We now know the answers to these questions. In
particular, the science of snow crystals evolved greatly in the recent decades due to the work of
Kenneth Libbrecht [197] following the earlier work of Ukichiro Nakaya [218]. What we may observe
with our eyes on a snowflake is a consequence of how water molecules combine at the molecular
level; see Figure 1.2. Depending on the temperature and on the saturation level (humidity), water
molecules tend to attach to the falling snowflake in a certain way (on top to form columns or on the
side to form flat plates). These parameters evolve over time during the fall of a snowflake impacting
its final shape. Since the branches of a single snowflake follow the same path in the space, they
experience the same conditions at the same moment. This explains why two branches of the same
snowflake grow the same independently.

Even more structured are crystals where molecules are organized periodically into a lattice.
For example, sodium chloride and pyrite are known to organize into cubic crystal systems at the
molecular level and this can be seen macroscopically; see Figure 1.3 (left). Positions of molecules
in the space are represented mathematically by discrete point sets Λ ⊂ Rd. To describe a point set,
it is natural to define the set of periods of Λ as

per(Λ) := {t ∈ Rd | Λ + t = Λ}.

The set of periods always contain 0 and is a subgroup of Rd. A point set is said crystallographic if
its set of periods is a module of rank d in Rd. Crystallographic point sets have a inherent restriction
among their possible symmetries [51, Section 3.2]. If a crystallographic point set Λ ⊂ Rd is invari-
ant under a n-fold rotational symmetry and d = 2 or d = 3, then it must be that n ∈ {1, 2, 3, 4, 6}.
In particular n ̸= 5. Thus, it was a surprise when 5-fold rotational symmetry were observed for
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an aluminium-manganese alloy, Al6Mn, by Shechtman and his team in the early 1980’s [255]. This
observation implied that the positions of the molecules could not have any translational symme-
tries. These non-periodic but very ordered materials are now called quasicrystals. A quasicrystal is
shown in Figure 1.3 (right). The pentagonal faces of a dodecahedron illustrate that the global struc-
ture is explained by a non-periodic arrangement of the molecules. The discovery of quasicrystals
led Shechtman to be awarded the Nobel Prize in Chemistry in 2011. The research on quasicrys-
tals and aperiodic order is quite rich and transdisciplinary involving different sciences including
Chemistry, Physics, Theoretical Computer Science, Mathematics and its sub-disciplines (geometry,
combinatorics, topology, dynamical systems, number theory) and, none the least, Arts [148, 252,
51, 52].

Figure 1.3: Left: A rock containing three crystals of pyrite (FeS2). The crystal structure of pyrite is primitive
cubic, and this is reflected in the cubic symmetry of its natural crystal facets. Right: A Ho-Mg-
Zn dodecahedral quasicrystal formed as a pentagonal dodecahedron. Unlike the pyrite, the
quasicrystal has faces that are regular pentagons. Image credits: https://en.wikipedia.org/
wiki/Cubic_crystal_system and https://en.wikipedia.org/wiki/Quasicrystal.

On the geometrical side, quasicrystals and aperiodic order are often studied from the point
of view of 2-dimensional tilings of the plane. One of the most well-known aperiodic tiling was
discovered by Penrose. In its original version, four shapes derived from the regular pentagon can
be used to tile the plane and none of the allowed tilings are periodic [227]. Another version uses
thin and thick rhombi of angle π

5 and 2π
5 ; see Figure 1.4. The aperiodic structure of Penrose tilings

is explained by the properties of a specific irrational number: the positive root φ of the polynomial
x2 − x − 1, also known as the golden ratio or golden mean. For example, in the kite-and-dart
version of the Penrose tilings, the ratio of kites to darts is equal to the golden ratio [228]. In a
Physics laboratory, the structure of a crystal or quasicrystals is guessed from the image generated
from a diffraction experiment. The same can be done with a tiling. Michael Baake made such an
experiment with a Penrose tiling during a conference at CIRM in April 2024; see Figure 1.4. Such
a five-fold symmetric patterns for the diffraction of a Penrose tiling was theoretically suggested by
Mackey as early as 1982 [205]. This was confirming a relation between quasicrystals discovered by
Shechtman and Penrose tilings.

Penrose tilings were soon given an equivalent description in terms of multigrids [98]. A Penrose
tiling can be lifted to a discrete surface in R5. Every edge of a Penrose tiling is parallel to one of
the fifth root of unity. We associate some vertex of a Penrose tiling to the origin 0 ∈ R2. The origin
is lifted to the origin (0, 0, 0, 0, 0) of R5. We proceed iteratively as follows. If a vertex v ± ξk is
neighbor of a vertex v already lifted to a coordinate p ∈ R5, then v ± ξk is lifted to the coordinate
p± ek ∈ R5, see Figure 1.5. This process is well-defined as the lifted coordinates does not depend
on the path taken from the origin. The set of lifted coordinates have the particularity of being
pretty close to a 2-dimensional vector space. More precisely, they are the points of a lattice inside
the Minkowski sum of a 5-dimensional hypercube with a 2-dimensional vector space in R5. This
construction is nowadays called a cut and project schemes [148, §10] and [51, §6.2]. We say that
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Figure 1.4: Left: a Penrose tiling. Right: the diffraction image of a laser beam going through a Penrose
tiling. Photo taken by the author during the presentation of Michael Baake at the conference
Multidimensional symbolic dynamics and lattice models of quasicrystals at CIRM, Marseille, April
4th, 2024.

the cut and project scheme here is 5→ 2 (read 5-to-2) because the projection to the physical space
goes from a 5-dimensional space to a 2-dimensional space. Notice that the fact that each edge in
a Penrose tiling has its own angle is what makes this construction “easy”. When tiles have all of
their edges parallel (for example, with tilings by unit square Wang tiles), it becomes less evident
how to lift a tiling to a higher-dimensional surface if at all possible.

(1, 0, 0, 0, 0)

(0, 1, 0, 0, 0)

(0, 0, 1, 0, 0)

(0, 0, 0, 1, 0)

(0, 0, 0, 0, 1)

π
ξ0

ξ1 = e
2π
5 i

ξ2

ξ3

ξ4

Figure 1.5: The vertices in a Penrose tiling can be lifted to a discrete surface in R5 using the preimage of
the projection π.

Symbolic dynamics, Combinatorics and Algorithms

One way to confirm we understand the snow crystal growth is to perform numerical simulations
based on physical models working on different length- and time- scales [196] reproducing quan-
titative experimental observations. However, the remarkable morphological diversity observed in
snow crystal growth remains generally inexplicable [198]. Among the most realistic computational
models of snow crystal growth, are cellular automata. A complete chapter of Libbrecht’s book is
devoted to cellular automata models for snow crystals growth including 2D and 3D models [197].
Cellular automata are maps defined on shift spaces AZd where the state of the image of a config-
uration at a certain position p ∈ Zd depends only on the state of the surrounding positions at a
bounded distance from p [168]. When d = 1, the terminology of sliding block code is also used
[200]. The long-term behavior of configurations within a cellular automaton are thus defined solely
from local rules.

Cellular automata theory is an important object of study within the subject of symbolic dynamics,
which is the thematic of this habilitation thesis. Symbolic dynamics is the study of dynamics on
a discrete space where each position in the space can take finitely many possible values from
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a finite set of states. One of the founding results in symbolic dynamics is the theorem of Curtis-
Lyndon-Hedlund which asserts that the morphisms between any two shift spaces (that is, continuous
mappings that commute with the shift) are exactly those mappings which can be defined uniformly
by a sliding block code.

Another important result of Symbolic Dynamics is a theorem of Morse-Hedlund about Sturmian
sequences, namely that a sequence is balanced if and only if it is a symbolic coding of a rotation,
also known as a mechanical word [216]. Morse-Hedlund theorem and its extension made 30 years
later by Coven and Hedlund to also include sequences of complexity n+ 1 are presented in details
in Chapter 3 within Part I.

The subject of this Habilitation thesis

This habilitation thesis aims at improving our understanding of how global ordered structures
emerge from local rules. The rules are often given in combinatorial terms by a restriction on the
possible patterns that may appear locally: either a finite set of forbidden patterns (subshifts of finite
type), or a limited number of patterns of a given size (low pattern complexity). From these local
rules, an interesting phenomenon happens when some global order is forced without being periodic.
This state is called aperiodic order [51]. Aperiodic order is a very interesting subject of study as it
gathers many sciences and communities: theoretical computer science, physics, chemistry, geometry,
dynamics, number theory, topology, algorithms and arts.

Sturmian sequences and their many characterizations are an important stepping stone for this
habilitation thesis. Many of the results gathered in this habilitation thesis are different kinds of
extensions to higher dimensions of the characterization of Sturmian sequences. Sturmian sequences
involve the simplest case of cut and project schemes, those that are 2-to-1. Therefore, it was natural
to split this thesis into the kind of cut and project schemes that are involved:

• Part II: Contributions within 2-to-1 cut and project schemes

• Part III: Contributions within 3-to-1 cut and project schemes

• Part IV: Contributions within 4-to-2 cut and project schemes

• Part V: Contributions within (d+ 1)-to-d cut and project schemes

Part II contains the new characterization of Sturmian sequences by indistinguishable asymptotic
pairs done in collaboration with Sebastián Barbieri during his postdoctoral studies in Bordeaux
and Štěpán Starosta (Czech Technical University in Prague). This results fits within 2-to-1 cut
and project schemes. It also includes the application of these results to the Markoff injectivity
conjecture, also known as the uniqueness conjecture, an open question open since more than 100
years. This was done in collaboration with Mélodie Lapointe (U. Moncton, Canada) and Wolfgang
Steiner (Paris).

Part III presents a set of ternary sequences of complexity 2n+ 1. These sequences are generated
by 2 substitutions proposed by Julien Cassaigne and are associated to a multidimensional continued
fraction algorithm. We proved that these sequences are almost always balanced. Thus, it also fits
within 3-to-1 cut and project schemes. This works constitute a very nice generalization of Sturmian
sequences to sequences over a ternary alphabets as it extends both its combinatorial and dynamical
properties. This works was done in collaboration with Julien Leroy (Belgium) and Julien Cassaigne
(Marseille).

Part IV presents our contributions to the study of Jeandel-Rao tilings and how it all started; see
Figure 1.6. The work was split into 4 articles, the last three of them published in 2021. Basically,
the articles prove that the aperiodic tilings by the set of 11 Wang tiles discovered by Jeandel and
Rao are generated by 4-to-2 cut and project schemes. Since the Wang tiles are unit square, the
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1.0 0.5 0.5 1.0
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0.5

1.0
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Figure 1.6: Given a finite word w = w1w2 · · ·wn ∈ Σ∗ and a frequency α ∈ R, we color the point e2πikα

according to the value of wk for every integer 1 ≤ k ≤ n. When α is the golden mean and
w is some word in the language of the Fibonacci word, we obtain the image on the left (see
the details of the experiment in Section 3.10). When α is the golden mean and w is some
horizontal row of tiles within some Jeandel-Rao tiling, we obtain the image on the right (see the
details of the experiment in Section 11.1). This experiment performed in April 2017, thanks to
a finite rectangular patch given to me by Michael Rao, was a motivation to start investigating
the relations between Sturmian sequences and aperiodic Wang tilings. The results obtained on
this subject over the past years are summarized in Part IV.

projections to the physical space are degenerate and non-injective. This is why Jeandel-Rao tilings
are harder to lift to a surface in R4 compared to lifting Penrose tiling to a surface in R5 which can
be done in a nonambiguous way; see Figure 1.7.

(1, 0, 0, 0)

(0, 1, 0, 0)

(0, 0, 1, 0)

(0, 0, 0, 1)

π π(e1) = π(e2)

π(e3) = π(e4)

Figure 1.7: Lifting the vertices of Jeandel-Rao tiling to a discrete surface in R4 is more difficult than with a
Penrose tiling because the projection π : R4 → R2 to the physical space is degenerate.

Since 4-to-2 cut and project schemes are essentially a Cartesian product of 2-to-1 cut and project
schemes, many of the intuitions known from Sturmian sequences apply. This part also contain the
computations of nonexpansive directions performed with Casey Mann and Jennifer McLoud-Mann
during their sabbatical year in Bordeaux (2019-2020). It also include the recent work on the family
of sets of metallic mean Wang tiles, which is a first attempt at a generalization of Jeandel-Rao
tilings. Metallic mean Wang tiles belong to the setup of 4-to-2 cut and project schemes.

Finally, Part V presents the work done in collaboration with Sebastián Barbieri about indis-
tinguishable asymptotic pairs in Zd. This concept provides a characterization of d-dimensional
Sturmian configurations. It belongs to (d+ 1)-to-d cut and project schemes.

In all of these results, there is always an interplay between combinatorics on one side and dy-
namics and number theory. Something interesting to observe are the different generalizations of
the characterization of Sturmian sequences in higher dimensions and how the combinatorial side
change. The most fluid generalization in terms of pattern complexity seems to be within (d + 1)-
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to-d cut and project schemes (Part V) where we prove that the pattern complexity characterizes
multidimensional Sturmian configurations. Within 3-to-1 cut and project schemes (Part III), we
describe a nice set of sequences of factor complexity 2n+ 1. But having factor complexity 2n+ 1
is not a characteristic property of these sequences (coding of 3-interval exchange transformations
also have complexity 2n+1). Within 4-to-2 cut and project schemes (Part IV), pattern complexity
is not relevant. Instead, it seems that languages and subshifts defined by a finite set of forbidden
patterns (subshifts of finite type or Wang shifts) is the important notion. As developed in Part IV,
many of the tools (desubstitutions, Rauzy induction, continued fraction expansions, numeration
systems) and intuitions that were developed in the one-dimensional setup can be adapted in higher
dimensions.

Scope of this thesis

A choice was made to include in this habilitation thesis only the research initiated after obtaining
the position at CNRS at LaBRI in 2017. This include a dozen of articles published since 2019.
Many of these results are related to cut and project schemes. Thus, it was natural to organize this
document according to the dimensions and codimensions of the cut and project schemes involved.

The results published during the direction of the Ph. D. thesis of Jana Lepšová [194] are not
included in this habilitation thesis. During the research made on Jeandel-Rao tilings, it became clear
that numeration systems were hidden in their description. With Jana, we started the exploration
of aperiodic Wang shifts using numeration systems. We proposed a complement version of the
Zeckendorf numeration system [18] and of the Dumont-Thomas numeration system [16] allowing to
represent every integers (not only the nonnegative ones). This gives an automatic characterization
of self-similar subshifts of finite type [17]. Configurations in the subshift are defined by the output
of an automata taking as input the representation of any integer coordinates in some well-chosen
numeration system. These results will be important for future research on 2-dimensional subshifts
defined from 4-to-2 cut and project schemes.

A lot of SageMath/Python code was written to obtain the results described in this thesis (Wang
shifts, polyhedron exchange transformations (PETs), polyhedron partitions, Rauzy induction of
PETs, 2-dimensional substitutions, cut and project schemes, multidimensional Sturmian configu-
rations and more). Their code is available in the optional package slabbe [24] of SageMath [246].
Its documentation is available at

https://pypi.org/project/slabbe/

These modules are not described in this thesis.

Batteries included

Computations included in this thesis are based on the open-source mathematical software SageMath
[246] and the optional package slabbe [24]. All SageMath input/output blocks in this thesis were
created using the sageexample environment with SageTeX version 2021/10/16 v3.6 and with the
following software versions:

1sage: version()
2SageMath version 10.6.beta7, Release Date: 2025-02-21
3sage: import importlib.metadata
4sage: importlib.metadata.version("slabbe")
50.8.0

The fact that these software are open-source means that anyone is free to use, reproduce, verify,
adapt for their own needs all of the computations performed therein according to the GNU General
Public License (version 2, 1991, http://www.gnu.org/licenses/gpl.html).
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1 Introduction

The contents of all of the sageexample environments from the tex source are gathered in the file
demos/hdr_doctest.sage autogenerated by SageTeX when running pdflatex. This file is included
in the slabbe package and available at https://gitlab.com/seblabbe/slabbe/. It allows to
make sure that future releases of the package do not break the code included in this thesis. It is
possible to reproduce all computations present in this thesis and check that all outputs are correct,
by doctesting this file, that is, by running the command sage -t demos/hdr_doctest.sage. It
should output All tests passed! and [96 tests, 8.13s wall] (most probably with a different
timing).

About the period 2017-2025

During the period 2017-2025, the author took part in the organization of conferences at Laboratoire
Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux:

• GasCOM 2024, The 13th edition of Random Generation of Combinatorial Structures, 24-28
June 2024.

• Journées de combinatoire de Bordeaux (JCB 2021, JCB 2022, JCB 2023, JCB 2024, JCB
2025)

• École des jeunes chercheuses et chercheurs en informatique mathématique (EJCIM 2020),
Bordeaux, initially scheduled from April 6 to 10, 2020. Cancelled and finally organized online
on BigBlueButton from June 8 to 18, 2020. The book prepared for the school is available
from Éditions CNRS [19].

• 17-th Mons Theoretical Computer Science Days, 10-14 septembre 2018.

Participation in the organization of Sage Days (SageMath, a mathematical open-source software
workshop) in Maison de la nature du bassin d’Arcachon, Le Teich, France:

• Sage Days 128, 10-14 février 2025.

• Sage Days 125, 29 janvier au 1er février 2024.

• Sage Days 117, 6-10 février 2023.

Ph. D. Students, postdoctorates and long-term visitors during the period:

• Jana Lepšová PhD Student (2020-2024), cosupervised with Lubomíra Dvořáková (Czech Re-
public)

• Reza Mohammadpour, Postdoctorate (2020-2021), funded by ANR CODYS

• Sebastián Barbieri, Postdoctorate (2019-2020), funded by ANR CODYS

• Jennifer McLoud-Mann, Idex Bordeaux Visiting Scholars positions (2019-2020).

• Casey Mann, Idex Bordeaux Visiting Scholars positions (2019-2020).

Internships: Nicolas Darboux (2018), Eugénie Meryl (2019), Khati–Lefrançois Elias (2019), Stef-
fania Sierre Galvis (2021), Adrian Pino (2023).

Outreach: Collège Cassignol, Bordeaux (2025); Collège Jean Rostand, Casteljaloux (2025); Col-
lège Olympe, Gouges de Vélines (2025); Collège Laure Gatet, Périgueux (2025); Fête de la science,
LaBRI (2024, 2025); Lycée Pauillac, Pauillac (2019); Lycée Kastler, Talence (2019, 2022, 2023,
2024); École Gambetta, Bègles (2021, 2023, 2024).
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Chapter 2

Symbolic dynamics

This section follows the preliminary section of the chapter [21] and article [8].

2.1 Dynamical systems

Most of the notions introduced here can be found in [275]. A dynamical system is a triple
(X,G, T ), where X is a topological space, G is a topological group and T is a continuous function
G × X → X defining a left action of G on X: if x ∈ X, e is the identity element of G and
g, h ∈ G, then using additive notation for the operation in G we have T (e, x) = x and T (g +
h, x) = T (g, T (h, x)). In other words, if one denotes the transformation x 7→ T (g, x) by T g, then
T g+h = T gT h. In this work, we consider the Abelian group G = Z× Z.

If Y ⊂ X, let Y denote the topological closure of Y and let Y T := ∪g∈GT
g(Y ) denote the T -

closure of Y . A subset Y ⊂ X is T -invariant if Y T = Y . A dynamical system (X,G, T ) is called
minimal if X does not contain any nonempty, proper, closed T -invariant subset. The left action
of G on X is free if g = e whenever there exists x ∈ X such that T g(x) = x.

Let (X,G, T ) and (Y,G, S) be two dynamical systems with the same topological group G. A
homomorphism θ : (X,G, T ) → (Y,G, S) is a continuous function θ : X → Y satisfying the
commuting property that Sg◦θ = θ◦T g for every g ∈ G. A homomorphism θ : (X,G, T )→ (Y,G, S)
is called an embedding if it is one-to-one, a factor map if it is onto, and a topological conjugacy
if it is both one-to-one and onto and its inverse map is continuous. If θ : (X,G, T )→ (Y,G, S) is a
factor map, then (Y,G, S) is called a factor of (X,G, T ) and (X,G, T ) is called an extension of
(Y,G, S). Two dynamical systems are topologically conjugate if there is a topological conjugacy
between them.

A measure-preserving dynamical system is defined as a system (X,G, T, µ,B), where µ is
a probability measure defined on the Borel σ-algebra B of subsets of X, and T g : X → X is a
measurable map which preserves the measure µ for all g ∈ G, that is, µ(T g(B)) = µ(B) for all
B ∈ B. The measure µ is said to be T -invariant. In what follows, when it is clear from the context,
we omit the Borel σ-algebra B of subsets of X and write (X,G, T, µ) to denote a measure-preserving
dynamical system.

The set of all T -invariant probability measures of a dynamical system (X,G, T ) is denoted by
MT (X). A T -invariant probability measure on X is called ergodic if for every set B ∈ B such
that T g(B) = B for all g ∈ G, we have that B has either zero or full measure. A dynamical system
(X,G, T ) is uniquely ergodic if it has only one invariant probability measure, i.e., |MT (X)| = 1.
One can prove that a uniquely ergodic dynamical system is ergodic. A dynamical system (X,G, T )
is said strictly ergodic if it is uniquely ergodic and minimal.

Let (X,G, S, µ,A) and (Y,G, T, ν,B) be two measure-preserving dynamical systems. We say that
the two systems are isomorphic (mod 0) if there exist measurable sets X0 ⊂ X and Y0 ⊂ Y of full
measure (i.e., µ(X0) = 1 and ν(Y0) = 1) with Sg(X0) ⊂ X0, T g(Y0) ⊂ Y0 for all g ∈ G and there
exists a bi-measurable bijection ϕ0 : X0 → Y0,
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2 Symbolic dynamics

• which is measure-preserving, that is, µ(ϕ−1
0 (B)) = ν(B) for all measurable sets B ⊂ Y0,

• satisfying ϕ0 ◦ Sg(x) = T g ◦ ϕ0(x) for all x ∈ X0 and g ∈ G.

The role of the set X0 is to make precise the fact that the properties of the isomorphism need to
hold only on a set of full measure. In this case, we call ϕ0 an isomorphism (mod 0) with respect to
µ and ν. We also refer to an everywhere defined measurable map ϕ : X → Y as an isomorphism
(mod 0) with respect to µ and ν if ϕ(x) = ϕ0(x) with x ∈ X for some ϕ0 and X0 as above. When
ϕ is also a factor map, some authors say that ϕ is a topo-isomorphism in order to express both
its topological and measurable nature [139].

2.2 Maximal equicontinuous factor

A metrizable dynamical system (X,G, T ) is called equicontinuous if the family of homeomor-
phisms {T g}g∈G is equicontinuous, i.e., if for all ε > 0 there exists δ > 0 such that

dist(T g(x), T g(y)) < ε

for all g ∈ G and all x, y ∈ X with dist(x, y) < δ. According to a well-known theorem [45, Theorem
3.2], equicontinuous minimal systems defined by the action of an Abelian group are rotations on
groups.

We say that θ : (X,G, T ) → (Y,G, S) is an equicontinuous factor if θ is a factor map and
(Y,G, S) is equicontinuous. We say that (Xmax, G, Tmax) is the maximal equicontinuous factor
of (X,G, T ) if there exists an equicontinuous factor πmax : (X,G, T ) → (Xmax, G, Tmax), such
that for any equicontinuous factor θ : (X,G, T ) → (Y,G, S), there exists a unique factor map
ψ : (Xmax, G, Tmax)→ (Y,G, S) with ψ ◦ πmax = θ. The maximal equicontinuous factor exists and
is unique (up to topological conjugacy), see [45, Theorem 3.8] and [183, Theorem 2.44].

Let θ : (X,G, T )→ (Y,G, S) be a factor map. We call the preimage set θ−1(y) of a point y ∈ Y
the fiber of θ over y. The cardinality of the fiber θ−1(y) for some y ∈ Y has an important role
and is related to the definition of other notions, see [45]. In particular, the factor map θ is almost
one-to-one if {y ∈ Y : card(θ−1(y)) = 1} is a Gδ-dense set in Y (that is a countable intersection
of open sets which is dense in Y ). In that case, (X,G, T ) is an almost one-to-one extension
of (Y,G, S). The set of fiber cardinalities of a factor map θ : (X,G, T ) → (Y,G, S) is the
set {card(θ−1(y)) : y ∈ Y } ⊂ N ∪ {∞}, see [131]. The set of fiber cardinalities of the maximal
equicontinuous factor of a minimal dynamical system is invariant under topological conjugacy, see
for instance [8, Lemma 2.2].

2.3 Subshifts and shifts of finite type
In this section, we introduce multidimensional subshifts, a particular type of dynamical systems
[200, §13.10], [247, 199, 158]. Let A be a finite set, d ≥ 1, and let AZd be the set of all maps x : Zd →
A, equipped with the compact product topology. An element x ∈ AZd is called configuration
and we write it as x = (xm) = (xm : m ∈ Zd), where xm ∈ A denotes the value of x at m.
The topology on AZd is compatible with the metric defined for all configurations x, x′ ∈ AZd by
dist(x, x′) = 2− min{∥n∥ : xn ̸=x′

n} where ∥n∥ = |n1| + · · · + |nd|. The shift action σ : n 7→ σn of the
additive group Zd on AZd is defined by

(σn(x))m = xm+n (2.1)

for every x = (xm) ∈ AZd and n ∈ Zd. If X ⊂ AZd , let X denote the topological closure of X
and let Xσ := {σn(x) | x ∈ X,n ∈ Zd} denote the shift-closure of X. A subset X ⊂ AZd is
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2.4 Symbolic representations

shift-invariant if Xσ = X. A closed, shift-invariant subset X ⊂ AZd is a subshift. If X ⊂ AZd is
a subshift we write σ = σX for the restriction of the shift action (2.1) to X. When X is a subshift,
the triple (X,Zd, σ) is a dynamical system and the notions presented in the previous section hold.

A configuration x ∈ X is periodic if there is a nonzero vector n ∈ Zd \ {0} such that x = σn(x)
and otherwise it is nonperiodic. We say that a nonempty subshift X is aperiodic if the shift
action σ on X is free.

For any subset S ⊂ Zd let πS : AZd → AS denote the projection map which restricts every
x ∈ AZd to S. A pattern is a function p ∈ AS for some finite subset S ⊂ Zd. To every pattern
p ∈ AS corresponds a subset π−1

S (p) ⊂ AZd called cylinder. A nonempty set X ⊂ AZd is a
subshift if and only if there exists a set F of forbidden patterns such that

X = {x ∈ AZd | πS ◦ σn(x) /∈ F for every n ∈ Zd and S ⊂ Zd}, (2.2)

see [158, Prop. 9.2.4]. A subshift X ⊂ AZd is a subshift of finite type (SFT) if there exists a
finite set F such that (2.2) holds. In this work, we consider shifts of finite type on Z× Z, that is,
the case d = 2.

2.4 Symbolic representations

In this section, we define the notion of symbolic representation as in the section on Markov partitions
from [200]. Intended to formalize the definition of Markov partition for hyperbolic automorphisms
on the torus, it is also very convenient to formalize the symbolic representations of Zd-actions acting
by rotations on the torus [8, 2].

Let M be a compact metric space. Consider Zd R↷ M a continuous Zd-action on M where
R : Zd×M →M . For some finite set A, a topological partition of M (in the sense of Definition
6.5.3 of [200]) is a collection {Pa}a∈A of disjoint open sets Pa ⊂ M such that M = ⋃

a∈A Pa. If
S ⊂ Zd is a finite set, we say that a pattern w ∈ AS is allowed for P, R if

⋂

k∈S

R−k(Pwk
) ̸= ∅. (2.3)

Let us recall that a Zd-subshift is a set of the form X ⊂ AZd which is closed in the prodiscrete
topology and invariant under the shift action; and its language is the union of L(x) for every
x ∈ X. Let LP,R be the collection of all allowed patterns for P, R. The set LP,R is the language of
a subshift XP,R ⊆ AZd defined as follows, see [158, Prop. 9.2.4],

XP,R = {x ∈ AZd | σn(x)|S ∈ LP,R for every n ∈ Zd and finite subset S ⊂ Zd}.

We call XP,R the symbolic extension of Zd R↷M determined by the partition P.
For each x ∈ XP,R and m ≥ 0 there is a corresponding nonempty open set

Dm(x) =
⋂

∥k∥∞≤m

R−k(Pxk
) ⊂M.

The sequence of compact closures (Dm(x))m∈N of these sets is nested and thus it follows that their
intersection is nonempty. Notice that there is no reason why diam(Dm(x)) should converge to zero,
and thus the intersection could contain more than one point. In order for XP,R to capture the
dynamics of Zd R↷ M , this intersection should contain only one point. This leads to the following
definition.
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2 Symbolic dynamics

Definition 2.1. A topological partition P of M gives a symbolic representation XP,R of Zd R↷
M if for every x ∈ XP,R the intersection

⋂∞
m=0Dm(x) consists of exactly one point ρ ∈ M . We

call x a symbolic representation of ρ.

If P gives a symbolic representation of the dynamical system Zd R↷M , then there is a well-defined
map f : XP,R → M which maps a configuration x ∈ XP,R ⊂ AZd to the unique point f(x) ∈ M in
the intersection ∩∞

n=0Dn(w). It is not hard to prove that f is in fact a factor map, that is, such that
f is continuous, surjective and Zd-equivariant (f(σk(x)) = Rk(f(x)) for every k ∈ Zd). A proof of
this fact for the case d = 1 can be found in [200, Prop. 6.5.8]. A proof for Z2-actions can be found
in [8, Prop. 5.1] and a proof for general group actions follows the same arguments.

2.5 Wang shifts

A Wang tile is a tuple of four colors (a, b, c, d) ∈ I × J × I × J where I is a finite set of vertical
colors and J is a finite set of horizontal colors, see [276, 243]. A Wang tile is represented as a unit
square with colored edges:

a

b

c

d

For each Wang tile τ = (a, b, c, d), let Right(τ) = a, Top(τ) = b, Left(τ) = c, Bottom(τ) = d
denote respectively the colors of the right, top, left and bottom edges of τ .

0 B
C

A
D

1 C
E

B
C

2 A
D

C
E

Figure 2.1: The set of 3 Wang tiles introduced in [276] using letters {A,B,C,D,E} instead of numbers from
the set {1, 2, 3, 4, 5} for labeling the edges. Each tile is identified uniquely by an index from the
set {0, 1, 2} written at the center each tile.

Let T = {t0, . . . , tm−1} be a set of Wang tiles as the one shown in Figure 2.1. A configuration
x : Z2 → {0, . . . ,m − 1} is valid with respect to T if it assigns a tile in T to each position of Z2

so that contiguous edges of adjacent tiles have the same color, that is,

Right(tx(n)) = Left(tx(n+e1)) (2.4)
Top(tx(n)) = Bottom(tx(n+e2)) (2.5)

for every n ∈ Z2 where e1 = (1, 0) and e2 = (0, 1). A finite pattern which is valid with respect to
U is shown in Figure 2.2.

Let ΩT ⊂ {0, . . . ,m− 1}Z2 denote the set of all valid configurations with respect to T . Together
with the shift action σ of Z2, ΩT is a subshift that we call a Wang shift. Furthermore, ΩT is a
subshift of finite type (SFT) of the form (2.2) since ΩT is the subshift defined from the finite set
of forbidden patterns made of all horizontal and vertical dominoes of two tiles that do not share
an edge of the same color. Reciprocally, every subshift of finite type can be encoded into a Wang
shift following a well-known construction (see [217, p. 141-142]).

To a configuration x ∈ ΩT corresponds a tiling of the plane R2 by the tiles T where the unit
square Wang tile tx(n) is placed at position n for every n ∈ Z2, as in Figure 2.2. In this document,
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2.5 Wang shifts




2 0 1
1 2 0
0 1 2
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C

Figure 2.2: A finite 3 × 3 pattern on the left is valid with respect to the Wang tiles since it respects Equa-
tions (2.4) and (2.5). Validity can be verified on the tiling shown on the right.

we consider tilings from the symbolic point of view. In particular, we represent tilings of plane by
Wang tiles symbolically by configurations Z2 → T .

A configuration x ∈ ΩT is periodic if there exists n ∈ Z2 \ {0} such that x = σn(x). A set of
Wang tiles T is periodic if there exists a periodic configuration x ∈ ΩT . Originally, Wang thought
that every set of Wang tiles T is periodic as soon as ΩT is nonempty [276]. This statement is
equivalent to the existence of an algorithm solving the domino problem, that is, taking as input
a set of Wang tiles and returning yes or no whether there exists a valid configuration with these
tiles. Berger, a student of Wang, later proved that the domino problem is undecidable and he also
provided a first example of an aperiodic set of Wang tiles [67]. A set of Wang tiles T is aperiodic
if the Wang shift ΩT is a nonempty aperiodic subshift. This means that in general one can not
decide the emptiness of a Wang shift ΩT .
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Chapter 3

Sturmian sequences

What Coven and Hedlund proved in [113] based on the initial work of Morse and Hedlund [216] on
Sturmian sequences dating from 1940 is that a biinfinite sequence is Sturmian if and only if it is
the coding of an irrational rotation. Proving that the coding of an irrational rotation is a Sturmian
sequence is the easy part and corresponds to what we did above. The difficult part is to prove that
a Sturmian sequence can be obtained as the coding of an irrational rotation for some starting point.
The proof is explained nowadays in terms of S-adic development of Sturmian sequences, Rauzy
induction of circle rotations, the continued fraction expansion of real numbers and the Ostrowski
numeration system [132]. Rauzy discovered that the connection between Sturmian sequences and
rotations can be generalized to sequences using three symbols [237] involving a rotation on a 2-
dimensional torus T2. This result was extended recently for almost all rotations on T2 [83], see also
[268].

Sturmian words form a deeply studied class of binary words with lots of equivalent defini-
tions [202]. They are for instance the aperiodic words with minimal factor complexity #Lw(n) =
n+ 1 [113], where Lw(n) denotes the language of words of length n of w ∈ AN, i.e., Lw(n) = {u ∈
An | u occurs in w}. Sturmian words are also the aperiodic 1-balanced binary words [216], where
an infinite word w ∈ AN is K-balanced if any two finite words of the same length occurring in
w have, up to K, the same number of occurrences of each letter. The balance property allows to
prove that for any Sturmian word w, the frequencies of 1 and 2 exist and are irrational. More than
that, any Sturmian word w has uniform word frequencies, that is, for all finite word u occurring
in w, the ratio |wkwk+1···wk+n|u

n+1 has a limit fu when n goes to infinity, uniformly in k.

3.1 The Fibonacci word

An integer is even if and only if the least significant digit of its expansion in base 2 is 0. Using this
connection, the concept of even/odd depends on the numeration system which is used. Instead of
using the base 2 expansion of a integer, we may consider the Zeckendorf numeration system which
expresses any nonnegative integer as a sum of nonconsecutive Fibonacci numbers [193, 118, 101,
279]; see Table 3.1. Note that this numeration system appeared earlier in a more general form in
Ostrowski’s work [223].

Sums of distinct nonconsecutive distinct Fibonacci numbers are naturally encoded as binary
sequences in the monoid {0, 1}∗ with the most significant digit on the left. For example,

11 = 8 + 3
= 1 · 8 + 0 · 5 + 1 · 3 + 0 · 2 + 0 · 1.

Thus, the integer 11 is represented by the binary string 10100 in the Zeckendorf numeration system.
The integer 11 is even in the Zeckendorf numeration system because its least significant digit is 0.
In general, every integer n is uniquely represented by a binary string repF (n) ∈ {0, 1}∗ not starting
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3 Sturmian sequences

n rep2(n) parity
0 = 0 0 even
1 = 1 1 odd
2 = 2 10 even
3 = 2 + 1 11 odd
4 = 4 100 even
5 = 4 + 1 101 odd
6 = 4 + 2 110 even
7 = 4 + 2 + 1 111 odd
8 = 8 1000 even
9 = 8 + 1 1001 odd
10 = 8 + 2 1010 even
11 = 8 + 2 + 1 1011 odd
12 = 8 + 4 1100 even
13 = 8 + 4 + 1 1101 odd

n repF (n) parity
0 = 0 0 even
1 = 1 1 odd
2 = 2 10 even
3 = 3 100 even
4 = 3 + 1 101 odd
5 = 5 1000 even
6 = 5 + 1 1001 odd
7 = 5 + 2 1010 even
8 = 8 10000 even
9 = 8 + 1 10001 odd
10 = 8 + 2 10010 even
11 = 8 + 3 10100 even
12 = 8 + 3 + 1 10101 odd
13 = 13 100000 even

Table 3.1: Left: parity of nonnegative integers written in base 2. Right: parity of nonnegative numbers
expressed as a sum of nonconsecutive Fibonacci numbers.

with 0 and containing no two consecutive 1’s. A binary sequence in {even, odd}N is deduced
from this construction: (sF (n))n≥0 = (parity(repF (n)))n≥0 where the parity is even if the least
significant digit is 0, and is odd if the least significant digit is 1. A priori, after observing Table 3.1,
the sequence sF seems to contain more even numbers than odd numbers. In fact, we can show
that the ratio of frequencies of even vs odd numbers is equal to the golden ratio (in particular,
this implies that the sequence sF is not periodic). The sequence sF is a Sturmian sequence: it is
another definition of the well-known Fibonacci word [68].

With Jana Lepšová, we proposed a complement version of the Zeckendorf numeration system
[18] and of the Dumont-Thomas numeration system [16] allowing to represent every integers (not
only the nonnegative ones).

3.2 Balanced sequences
In this section, we define balanced sequences which were studied by Morse and Hedlund in 1940
shortly after their seminal article on symbolic dynamics [215].

Let s ∈ ΣZ be a sequence over a finite set Σ. The language of s is L(s) = {sksk+1 · · · sk+n−1 |
k ∈ Z, n ≥ 0} ⊂ Σ∗ is the set of subwords (or factors) occurring in s. The language of subwords of
length n ∈ Z≥0 is Ln(s) = L(s) ∩ Σn.

Definition 3.1 ([216]). A sequence s ∈ ΣZ is balanced if for every positive integer n, for every
u, v ∈ Ln(s) and every letter a ∈ Σ, the number of a’s occurring in u and v differ by at most 1.

For example, the right-infinite Fibonacci word [68]

F = 01001010010010100101 . . . ∈ ΣZ≥0

over the alphabet Σ = {0, 1}, and its left-infinite reversal

F̃ = . . . 10100101001001010010 ∈ ΣZ<0

are such that both

F̃ · 01 · F = . . . 10100101001001010010 · 01 · 01001010010010100101 . . .
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and
F̃ · 10 · F = . . . 10100101001001010010 · 10 · 01001010010010100101 . . .

are balanced sequences. This observation is illustrated for factors of length up to six in the following
table.

n Ln(F̃01F ) number
of 0’s

number
of 1’s

0 {ε} 0 0
1 {0, 1} 0 or 1 0 or 1
2 {00, 01, 10} 1 or 2 0 or 1
3 {001, 010, 100, 101} 1 or 2 1 or 2
4 {0010, 0100, 0101, 1001, 1010} 2 or 3 1 or 2
5 {00100, 00101, 01001, 01010, 10010, 10100} 3 or 4 1 or 2
6 {001001, 001010, 010010, 010100, 100100, 100101, 101001} 3 or 4 2 or 3

From the table, we confirm that the number of 0’s and the number of 1’s occurring in two factors
of the same length differ by at most 1.

Other examples are the two-sided sequences

. . . 01010101010101010101010101010101 . . .

. . . 00000000000000010000000000000000 . . .

which are also balanced. In other words, balanced sequences may be periodic or ultimately periodic.

3.3 Mechanical sequences
Morse and Hedlund proved that balanced sequences can be described by what they called mechan-
ical sequences.

Let α ∈ [0, 1] and ρ ∈ R and consider the lower and upper mechanical sequences sα,ρ and s′
α,ρ

with slope α and intercept ρ given respectively by

sα,ρ : Z → {0, 1}
n 7→ ⌊α(n+ 1) + ρ⌋ − ⌊αn+ ρ⌋

and
s′

α,ρ : Z → {0, 1}
n 7→ ⌈α(n+ 1) + ρ⌉ − ⌈αn+ ρ⌉.

When α is rational, the sequences sα,ρ and s′
α,ρ are periodic and their period corresponds to a

Christoffel word. Christoffel words are very interesting object on their own and are presented in
Chapter 4. When α is irrational, then sα,ρ and s′

α,ρ are not periodic. It is clear that if ρ− ρ′ is an
integer, then sα,ρ = sα,ρ′ and s′

α,ρ = s′
α,ρ′ . Thus we may always assume 0 ≤ ρ < 1. Moreover, if

Z ∩ αZ + ρ = ∅, then sα,ρ = s′
α,ρ.

Theorem 3.2 (Morse, Hedlund [216]). Let w ∈ {0, 1}Z be a non-ultimately periodic two-sided
sequence. The following conditions are equivalent:

• w is balanced,

• there exists α ∈ [0, 1] \ Q and ρ ∈ [0, 1) such that w = sα,ρ or w = s′
α,ρ is a mechanical

sequence.

Note that Morse and Hedlund’s theorem is stronger as they considered all balanced sequences
including periodic and skew (ultimately periodic) sequences. As the stronger result is best stated
in terms of Christoffel words, we postpone it to Section 4.7.
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3.4 Maximal equicontinuous factor
The goal of this section is to reformulate Theorem 3.2 using factor maps within topological and
measurable dynamical systems, because this is how we state such results in higher dimensions for
Jeandel-Rao tilings and metallic mean Wang shifts in Part IV.

Let u ∈ {0, 1}Z be a non-ultimately periodic two-sided balanced sequence. Let

Xu = {σn(u) : n ∈ Z}

be the subshift defined as the topological closure of the orbit of u under the shift map. Since every
sequence w ∈ Xu is balanced, using Theorem 3.2, we may define a map

Φu : Xu → T
w 7→ ρ

where ρ ∈ [0, 1) is the intercept such that u = sα,ρ or u = s′
α,ρ is a mechanical sequence for some

α ∈ [0, 1] \Q. The map Φu relates the shift action on Xu with the irrational rotation by α on the
circle T = R/Z:

σ : Xu → Xu

w 7→ (wi+1)i∈Z
and Rα : T → T

x 7→ x+ α (mod 1)

because every sequence w ∈ Xu is a mechanical sequence of the same slope α.

Theorem 3.3 ([216, 156, 113, 202, 69, 38, 33]). Let u ∈ {0, 1}Z be a non-ultimately periodic
two-sided balanced sequence. The Sturmian subshift Xu has the following properties:

(i) the map Φu : Xu → T is a factor map, that is, it is continuous, onto and satisfies Φu ◦ σ =
Rα ◦ Φu for some irrational α ∈ [0, 1] \Q:

Xu Xu

T T

Φu

σ

Φu

Rα

(ii) Z Rα↷ T is the maximal equicontinuous factor of Z σ↷ Xu,

(iii) the factor map f : Xu → T is almost one-to-one and its set of fiber cardinalities is {1, 2},

(iv) #Φ−1
u (ρ) = 2 if and only if ρ ∈ Z + Zα if and only if sα,ρ ̸= s′

α,ρ, in which case Φ−1
u (ρ) =

{sα,ρ, s
′
α,ρ},

(v) the shift-action Z σ↷ Xu on the Sturmian subshift is uniquely ergodic,

(vi) the measure-preserving dynamical system (Xu,Z, σ, ν) is isomorphic to (T,Z, Rα, λ) where ν
is the unique shift-invariant probability measure on Xu and λ is the Haar measure on T.

Theorem 3.3 is an important stepping stone for this habilitation thesis. The factor map Φu is
not one-to-one precisely on the pairs

Φ−1
u (ρ) = {sα,ρ, s

′
α,ρ}

such that ρ ∈ Z + Zα. The importance of these asymptotic pairs was already noticed by Hedlund
[156]. In Part II of this thesis, we propose a new characterization of Sturmian sequences using
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the notion of indistinguishability of these asymptotic pairs. In Part III, we extend Theorem 3.3
to sequences over a three-letter alphabet (Theorem 10.1 and Theorem 10.3). In Part IV, we prove
higher dimensional versions of Theorem 3.3 about Jeandel-Rao tilings (Theorem 11.2) and metallic
mean Wang shifts (Theorem 12.3). Finally, the notion of indistinguishable asymptotic pairs was
rich enough to extend nicely in higher dimensions: in Part V, we propose a characterization of
multidimensional Sturmian configurations.

3.5 Sequences of complexity n + 1

In [216], Morse and Hedlund proved that mechanical sequences have complexity n + 1, but the
converse remained open. The factor complexity of a sequence s ∈ ΣZ is the function n 7→ #Ln(s)
that counts the number of factors of length n in its language [104]. While Morse and Hedlund
prove that a sequence of complexity ≤ n is ultimately periodic [215], the description of sequences
of complexity n+ 1 was completed 30 years later by Coven and Hedlund.

For example, the factor complexity of the Fibonacci word is computed in the following table up
to words of length 6.

n Ln(F̃01F ) #Ln(F̃01F )
0 {ε} 1
1 {0, 1} 2
2 {00, 01, 10} 3
3 {001, 010, 100, 101} 4
4 {0010, 0100, 0101, 1001, 1010} 5
5 {00100, 00101, 01001, 01010, 10010, 10100} 6
6 {001001, 001010, 010010, 010100, 100100, 100101, 101001} 7

From the table, we confirm that there are n+ 1 factors of length n.
Other examples of two-sided sequences of complexity n+ 1 are

. . . 00000000000000010000000000000000 . . .

. . . 00000000000000001111111111111111 . . .

In other words, two-sided sequences of complexity n + 1 may be ultimately periodic. Also, notice
that the latter one is not balanced.

One way to get around those problematic limit cases is to consider only right-infinite sequences
where the limit cases do not occur. This is what is done in the treatment of Sturmian sequences
made in [202, Chapter 2] and [33, Chapter 9]. The chapter [132, Chapter 6] considers both one-sided
and two-sided sequences.

Theorem 3.4 (Coven, Hedlund [113]). Let w ∈ {0, 1}Z be a non-ultimately periodic two-sided
sequence. The following conditions are equivalent:

• w is balanced,

• w has factor complexity n+ 1,

• there exists α ∈ [0, 1] \ Q and ρ ∈ [0, 1) such that w = sα,ρ or w = s′
α,ρ is a mechanical

sequence.

Note that Coven and Hedlund considered all balanced sequences including periodic and skew
(ultimately periodic) sequences [113, Theorem 4.12]. As this result is best stated in terms of
Christoffel words, we postpone it to Section 4.7.
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3.6 About the proof of Coven-Hedlund theorem

The proof of Theorem 3.4 made in [113] and in books [202, Theorem 2.1.13], [132, Theorem 6.1.8]
always follows the same structure:

has factor complexity n+ 1 ⇐⇒ is balanced ⇐⇒ is a mechanical sequence.
Moreover, proving that mechanical sequences are balanced or has complexity n + 1 is relatively
easy. However, proving that a balanced sequence (or a sequence of complexity n+ 1) is mechanical
needs more work as we need to a way to construct the slope α and intercept ρ.

A proof which is very instructive [38] is using the desubstitution of balanced sequences and of
mechanical sequences by the substitutions

τ0 =
{

0 7→ 0
1 7→ 01

and τ1 =
{

0 7→ 01
1 7→ 1

.

On the one hand, balanced sequences may be desubstituted by τ0 or τ1. The following proposition
is not explicitly expressed in [38], but it can be deduced from the results in its Section 6.3.
Proposition 3.5 ([38, Section 6.3]). Let Σ ⊂ {0, 1}Z be the subset of balanced sequences. Then,

Σ = τ0(Σ)σ ∪ τ1(Σ)σ
.

More precisely, every balanced sequence is, up to a shift, the image of a unique balanced sequence
under the substitution τ0 or τ1.

On the other hand, mechanical sequences may also be desubstituted by τ0 or τ1. The follow-
ing proposition is not explicitly expressed in [38], but it can be deduced from the results in its
Section 6.4.
Proposition 3.6 ([38, Section 6.4]). Let Φ ⊂ {0, 1}Z be the subset of mechanical sequences. Then,

Φ = τ0(Φ)σ ∪ τ1(Φ)σ
.

More precisely, every mechanical sequence is, up to a shift, the image of a unique mechanical
sequence under the substitution τ0 or τ1.

From Proposition 3.5 and Proposition 3.6, we can deduce that Σ = Φ. But, it can also be used
to prove in a constructive way that every balanced sequence is a mechanical sequence.

Indeed, following Proposition 3.5, any balanced sequence x ∈ Σ can be written as

x = lim
n→∞

σ−b0τa0
0 · σ−b1τa1

1 · . . . · σ−b2nτa2n
0 · σ−b2n+1τ

a2n+1
1 (1 · 0)

where
• 0 ≤ a0 and 0 < an if n > 0,

• bn ≤ an for every n ≥ 0,

• if bn+1 = an+1, then bn = 0 [38, Theorem 6.3.33].
The sequence (an, bn) is called the second multiplicative coding of x ([38, Definition 6.3.34]). From
[38, Theorem 6.4.21], the sequence (an)n is the continued fraction expansion of the slope of the
mechanical sequence and the sequence (bn)n is the Ostrowski expansion of the intercept ρ of the
mechanical sequence with respect to the sequence (an)n.

The proof of Proposition 3.5 is combinatorial, for instance see [38, Lemma 6.3.5]. However, the
proof of Proposition 3.6 has a dynamical system and number theory flavor. In particular, it involves
Rauzy induction (first return maps) and continued fraction expansion of real numbers.

Any attempts at generalizing Coven-Hedlund theorem in higher dimensions can not ignore these
key concepts.
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3.7 Continued fraction expansion

A theorem of Dirichlet says that every positive irrational number α has infinitely many rational
approximations p

q ∈ Q such that |α − p
q | < 1

q2 [153]. Such approximations can be computed from
the continued fraction expansion of α

α = [a0; a1, a2, . . . ] = a0 + 1

a1 + 1

a2 + 1
. . .

where a0 ∈ N and a1, a2, . . . ∈ N \ {0}. Indeed, for all n ∈ N, the truncation pn

qn
= [a0; a1, . . . , an]

provides a sequence (pn/qn)n∈N of rational approximations of α called convergents satisfying Dirich-
let’s theorem. Equivalently, the convergents pn/qn can be computed from a product of the matrices
A0 = ( 1 1

0 1 ) and A1 = ( 1 0
1 1 ) involving the above sequence of partial quotients:

(
p2n+1 p2n

q2n+1 q2n

)
= Aa0

0 A
a1
1 A

a2
0 · · ·A

a2n+1
1 .

The convergence of pn/qn to α then implies that
(
α
1

)
R≥0 =

⋂

k≥0
Ai0Ai1 · · ·Aik

R2
≥0 (3.1)

where the sequence (in)n∈N ∈ {0, 1}N is 0a01a10a2 · · · 0a2k1a2k+1 · · · . Equation (3.1) holds even
if 0 and 1 do not both occur infinitely many times in (in)n∈N, in which case α is rational. If
∆ = {(x, y) ∈ R2

≥0 | x + y = 1} denotes the projection of the positive cone R2
≥0 under the map

x 7→ x/∥x∥1, Equation (3.1) defines a continuous and onto map

π : {0, 1}N → ∆.

This map is almost one-to-one and its (almost everywhere) inverse is obtained by iterating the
normalized Euclid algorithm. More precisely, Euclid’s algorithm is the map FE defined on R2

≥0 by,
for x = (x, y),

FE(x) =
{

(x− y, y) = A−1
0 x, if x ≥ y;

(x, y − x) = A−1
1 x, if x < y.

The map FE induces a map fE : ∆→ ∆ defined by

fE(x) = FE(x)
∥FE(x)∥1

.

which subtract the smallest entry to the largest and renormalize the vector so that the entries sum
to one.

Thus the shift map on {0, 1}N defines a symbolic representation of the dynamical system (∆, fE).
Setting ∆0 = {(x, y) ∈ ∆ | x ≥ y} and ∆1 = {(x, y) ∈ ∆ | x < y}, it induces a map δ : ∆→ {0, 1}N
defined by δ(x) = (in)n∈N, where fn

E(x) ∈ ∆in and this map satisfies

π ◦ δ = Id∆ and δ ◦ fC = σ ◦ δ.

where σ is the shift-map on {0, 1}N.
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3.8 Continued fraction expansion and Sturmian sequences

Sturmian words give a combinatorial flavor to Equation (3.1). With the matrices A0 and A1 are
respectively associated the substitutions

τ0 =
{

0 7→ 0
1 7→ 01

and τ1 =
{

0 7→ 01
1 7→ 1

.

Recall that the incidence matrix of a substitution σ : A∗ → A∗ is the matrix Mσ = (|σ(a)|b)b,a∈A,
where |u|v stands for the number of occurrences of a word v in a word u. It is easily seen that for
any word w ∈ A∗, Mσ(|w|a)a∈A = (|σ(w)|a)a∈A. Here, the incidence matrix of the substitution τ0
(resp. τ1) is the matrix A0 (resp. A1).

With the directive sequence (in)n∈N ∈ {0, 1}N is then associated the {τ0, τ1}-adic word w ∈
{0, 1}N:

w = lim
n→∞

τi0τi1 · · · τin(0ω) (3.2)

which is a Sturmian word [38] if both letters 0 and 1 appear infinitely often in the directive sequence.
Since Aj is the incidence matrix of the substitution τi for i ∈ {0, 1}, Equation (3.1) ensures that
the vector of frequencies of letters in w exists and is equal to π((in)n∈N) = 1

1+α(α, 1).
The following statement can be deduced from the results in Section 6.4 of [38].

Theorem 3.7. [38, § 6.4] Let α ∈ R>0 \ Q. Consider the partition of the circle R/(1 + α)Z into
I1 = [−1, 0) and I0 = [0, α). Let w : Z→ {0, 1} be the sequence such that

wn =
{

0 if n ∈ I0 (mod 1 + α),
1 if n ∈ I1 (mod 1 + α).

Then the substitutive structure of w is

w = lim
n→∞

sa0
0 s

a1
1 . . . sa2n

2n s
a2n+1
2n+1 (1 · 0)

where

s2n = τ0 =
{

0 7→ 0
1 7→ 01

and s2n+1 = τ1 =
{

0 7→ 01
1 7→ 1

(3.3)

for all n ≥ 0 and α = [a0; a1, a2, . . . ] is the continuous fraction expansion of α.

For general starting point on the circle, the walking sequence has the same substitutive structure
as in the theorem but one must add a certain amount bn ∈ N of shifts after each substitution τan

n

with 0 ≤ bn ≤ an and the sequence (bn)n∈N of shifts is given by the expansion of the origin of the
walk in the Ostrowski numeration system [38, Theorem 6.4.21].

The proof of Theorem 3.7 is based on induced transformations (first return maps) of irrational
rotations on the circle. In general, the first return map of a rotation to an interval is a 3-interval
exchange transformation (IET) but for some particular values for the length of the interval, it
may be a 2-IET which corresponds to a rotation [235]. This allows to desubstitute a mechanical
sequence and write it as the image of another mechanical sequence using a procedure known as
Rauzy induction for general k-IETs [236]. Here k = 2 is always satisfied, hence the induced
transformation is always a rotation on a circle.
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3.9 Rauzy induction of a rotation computed with SageMath
The goal of this section is to illustrate Rauzy induction in the case of rotations on a torus on a
simple example. This is a key concept in the proof of Theorem 3.7. It turned out to also be a
key concept to understand Jeandel-Rao tilings. To study Jeandel-Rao tilings, we extended the
notion of Rauzy induction to polygonal partitions and to Z2-actions acting by rotations on a 2-
dimensional torus [9]. The algorithm computes the first return map and the induced substitution
of any polyhedron exchange transformation whose domain in Rd is restricted to some half space.

Using rectangles in R2, we illustrate how to use this algorithm is the easier setup of a single one-
dimensional irrational rotation. Let α = 3

110
√

5 + 75
22 ≈ 3.47007 be one of the root of the quadratic

polynomial p(x) = 55x2 − 375x+ 639 and whose continued fraction expansion is

α = [3; 2, 7, (1, 5)∗] = 3 + 1
[2; 7, (1, 5)∗] .

Our goal is to understand the orbits under the rotation by x 7→ x+ α on the circle R/(1 + α)Z.
We construct α in SageMath as a number field element.

6sage: K.<sqrt5> = NumberField(x^2-5, embedding=2.2)
7sage: alpha = sqrt5*3/110 + 75/22
8sage: continued_fraction(alpha)
9[3; 2, 7, (1, 5)*]
10sage: alpha.n()
113.47007458120454

Polygon exchange transformations were implemented in the slabbe optional package. We may
use them to define interval exchange transformation by ignoring one of the coordinates.

We define the horizontal translation by α on the 2-torus R/(1 + α)Z× R/Z. We represent it as
a polygon exchange transformation on the fundamental domain [−1, α)× [0, 1). It is essentially a
horizontal interval exchange transformation.

12sage: from slabbe import PolyhedronExchangeTransformation as PET
13sage: base = diagonal_matrix((1+alpha,1))
14sage: translation = vector((alpha, 0))
15sage: fundamental_domain = polytopes.hypercube(2, intervals=[(-1,alpha), (0,1)])
16sage: T = PET.toral_translation(base, translation, fundamental_domain)
17sage: T
18Polyhedron Exchange Transformation of
19Polyhedron partition of 2 atoms with 2 letters
20with translations {0: (-1, 0), 1: (3/110*sqrt5 + 75/22, 0)}

1 1 2 3
0.2
0.4
0.6
0.8
1.0

01

domain partition

1 1 2 3
0.2
0.4
0.6
0.8
1.0

0 1

image partition

We compute the induced transformation, also known as the first return map of T when restricted
to the half-space defined by the inequality α− 3− x ≥ 0, that is, x ≤ α− 3. The original symbolic
dynamical system is the image of the induced symbolic dynamical system under a substitution
computed below.

21sage: Tind,s = T.induced_transformation(ieq=[alpha-3,-1,0])
22sage: Tind
23Polyhedron Exchange Transformation of
24Polyhedron partition of 2 atoms with 2 letters
25with translations {0: (-1, 0), 1: (3/110*sqrt5 + 9/22, 0)}
26sage: s
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27{0: [0], 1: [1, 0, 0, 0]}

1.0 0.8 0.6 0.4 0.2 0.2 0.4

0.2

0.4

0.6

0.8

1.0

0

1

domain partition

1.0 0.8 0.6 0.4 0.2 0.2 0.4

0.2

0.4

0.6

0.8

1.0

0

1

image partition

We renormalize the transformation in order for the smallest interval to have size 1. It is better
to renormalize by a negative value, that is, by the factor −1

α−3 , so to have the same left end-point
of the domain as at the beginning: −1.

28sage: D = diagonal_matrix((-1/(alpha-3),1))
29sage: Tindzoom = D * Tind
30sage: Tindzoom
31Polyhedron Exchange Transformation of
32Polyhedron partition of 2 atoms with 2 letters
33with translations {0: (-1/6*sqrt5 + 5/2, 0), 1: (-1, 0)}

1.0 0.5 0.5 1.0 1.5 2.0

0.2
0.4
0.6
0.8
1.0

0 1

domain partition

1.0 0.5 0.5 1.0 1.5 2.0

0.2
0.4
0.6
0.8
1.0

01

image partition

The new horizontal translation is
34sage: beta = Tindzoom.translations()[0][0]
35sage: continued_fraction(beta)
36[2; 7, (1, 5)*]

We observe that the continued fraction expansion of β is a shift of that of α. This means that
the orbits under the rotation α on R/(1 + α)Z coded by the partition are the images under the
substitution (computed above) 0 7→ 0, 1 7→ 1000 of the orbits under the rotation β on R/(1 + β)Z.

We may repeat this process indefinitely. In this example, the process loops because α is a
quadratic algebraic number and its continued fraction expansion is ultimately periodic. It gives a
substitutive description of the orbits under the rotation α.

3.10 Guessing that a sequence is the coding of a rotation in Sage-
Math

It is worthwhile to recall here in this introduction the intuitions associated to Sturmian sequences.
And the best way to achieve this is by performing a computer experiment.

There is a very nice and easy computer experiment allowing to guess that a sequence s : N→ A
is the coding of a rotation. For every a ∈ A, let

Pa(γ) = e2πi γ s−1(a) = {e2πi γ n | n ∈ s−1(a)}

be a set of points on the unit circle where γ ∈ [0, 1) is some chosen frequency. To every a ∈ A, we
associate a unique color and we draw every points in the set Pa(γ) using this color. The goal of
the experiment is to find a frequency γ such that the closure of the sets Pa(γ), a ∈ A, are disjoint
intervals on the unit circle.

34



3.10 Guessing that a sequence is the coding of a rotation in SageMath

The above experiment can be performed in SageMath/Python using the following two functions.
The reader not knowledgeable in the Python language can skip reading their code with no problem.
If painful looking at code here in the introduction, their presence allows the easy reproducibility
of the following results by the reader. The first Python function computes the sets of preimages
{s−1(a)}a∈A of a sequence s.

37sage: def preimage(sequence):
38....: from collections import defaultdict
39....: d = defaultdict(list)
40....: for (n,a) in enumerate(sequence):
41....: d[a].append(n)
42....: return dict(d)

Then, we define a function which draws the sets of points Pa(γ) with a different color for every
a ∈ A (using the rainbow function in SageMath):

43sage: def draw_sequence_on_circle(sequence, frequency, keys=None):
44....: d = preimage(sequence)
45....: keys = sorted(d.keys()) if keys is None else keys
46....: c_dict = dict(zip(keys, rainbow(len(keys))))
47....: markers = "+x><^vDH_|os*,dh12345678"
48....: m_dict = dict(zip(keys, markers))
49....: G = Graphics()
50....: for a in d:
51....: L = [e^(2*pi*I*frequency*n) for n in d[a]]
52....: G += points(L, color=c_dict[a], legend_label=a, marker=m_dict[a], pointsize=30)
53....: title = "Frequency␣=␣{:.5f}".format(frequency.n())
54....: G += circle((0,0), 1, linestyle="dotted", alpha=.5, color="gray", title=title)
55....: return G

We first illustrate the usage of the above two functions on a simple periodic example.

Example 3.8. Consider the periodic sequence (even, odd, even, odd, even, odd, even, odd, . . . ) of
period 2. The first function returns a Python dictionary giving the even and odd positions:

56sage: L = ["even","odd"] * 6
57sage: preimage(L)
58{’even’: [0, 2, 4, 6, 8, 10], ’odd’: [1, 3, 5, 7, 9, 11]}

The second function allows to confirm that the frequency γ = 1
2 allows to separate the two sets

Podd(γ) and Peven(γ). Testing also a frequency γ = 1
2 + ε for some small value of ε > 0 allows to

confirm that no two points of different color are drawn at the same position when γ = 1
2 .

59sage: G1 = draw_sequence_on_circle(["even","odd"]*10, sqrt(3))
60sage: G2 = draw_sequence_on_circle(["even","odd"]*10, 1/2+1/200)
61sage: G3 = draw_sequence_on_circle(["even","odd"]*10, 1/2)
62sage: G = graphics_array([G1,G2,G3])
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3 Sturmian sequences

Concluding that the frequency of even integers is 1
2 is quite reassuring. Let us now consider a

more subtle example based on the Fibonacci word.

Example 3.9. Below we draw the colored set of points Podd(γ) and Peven(γ) on the circle when
γ =
√

3 on the left and γ = 1+
√

5
2 on the right.

63sage: F = words.FibonacciWord([’even’,’odd’])
64sage: F[:15]
65even,odd,even,even,odd,even,odd,even,even,odd,even,even,odd,even,odd
66sage: GFibo1 = draw_sequence_on_circle(F[:100], frequency=sqrt(3))
67sage: GFibo2 = draw_sequence_on_circle(F[:100], frequency=(1+sqrt(5))/2)
68sage: GFibo = graphics_array([GFibo1,GFibo2])
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We observe that when the frequency is γ = 1+
√

5
2 , the two sets of colored points belong to two

disjoint intervals. This constitutes an experimental proof that the Fibonacci word is the coding
of a rotation. As a consequence, to know if a positive integer n is even, it is sufficient to check if
1+

√
5

2 · n (mod 1) belongs to a certain interval in the unit circle. We say that the Fibonacci word
is the coding of a irrational rotation by two intervals because the n-th symbol of the sequence is
obtain by coding the n-th image of a rotation by angle 2πα according to which of the two intervals
it belongs. In this example, the ratio of the length of the two intervals is the golden ratio. In
general, every Sturmian sequence is the coding of an irrational rotation where the ratio of the
lengths of the two intervals is some positive irrational number.

The same experiment was very useful to study the Jeandel-Rao tilings, see Section 11.1.
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Chapter 4

Christoffel words and Markoff theory

In this chapter, we briefly present the notion of Christoffel words, their relation with the convergents
of continued fraction expansions and the theory developed by Markoff during his study of quadratic
forms. For a deeper reading of this very interesting topic, we suggest the very nice books [71, 240].

4.1 Stern-Brocot tree

The Stern-Brocot tree is a binary tree of rational numbers defined as follows. Every rational number
q ∈ Q>0 has exactly two children in the Stern-Brocot tree: if

q = [a0; a1, a2, . . . , ak] = [a0; a1, a2, . . . , ak − 1, 1]

are the two possible continued fraction expansion of the rational number q, then one child is the
number represented by the continued fraction

[a0; a1, a2, . . . , ak + 1]

while the other child is represented by the continued fraction

[a0; a1, a2, . . . , ak − 1, 2].

One of these children is less than q and this is the left child; the other is greater than q and it is
the right child, see Figure 4.1.
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Figure 4.1: The Stern-Brocot tree.

The Stern-Brocot tree is such that every rational number appears exactly once [146, §4.5].
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4 Christoffel words and Markoff theory

4.2 Christoffel words

Christoffel words were introduced by E. B. Christoffel in his 1875 article [110]. They are words over
the alphabet {0, 1} that can be defined recursively as follows: 0, 1 and 01 are Christoffel words and
if u, v, uv ∈ {0, 1}∗ are Christoffel words then uuv and uvv are Christoffel words [71]. This gives
the set of Christoffel words the structure of a binary tree, see Figure 4.2. The shortest Christoffel
words are:

0, 1, 01, 001, 011, 0001, 00101, 01011, 0111, 00001, 0001001, 00100101, 0010101, . . .

Note that these are also named lower Christoffel words.
Every Christoffel word w can be associated to a rational number by the map w 7→ |w|1

|w|0 counting
the ratio between the number of occurrences of the letters 1 and 0 in the word w. It is known
that this maps sends bijectively the binary tree of Christoffel words onto the Stern-Brocot tree of
rational numbers [71, Proposition 7.6].
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Figure 4.2: The Stern-Brocot tree, the tree of proper Christoffel words and tree of proper Markoff triples
merged into a single infinite binary tree.

4.3 Christoffel sequences within periodic Sturmian sequences

Let α ∈ [0, 1] and consider the lower and upper sequences cα and c′
α given respectively by

cα : Z → {0, 1}
n 7→ ⌊α(n+ 1)⌋ − ⌊αn⌋ and c′

α : Z → {0, 1}
n 7→ ⌈α(n+ 1)⌉ − ⌈αn⌉.
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4.4 Pirillo’s theorem

When α is rational, the sequences cα and c′
α are periodic and their period corresponds to Christoffel

words [71], see Figure 4.3. More precisely, the shortest periodic pattern and smallest for the

(−13,−5)

(0, 0)

(13, 5)

0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1

Figure 4.3: The lower and upper sequences cα and c′
α when α = 5/13 are periodic.

lexicographic order of cα is the lower Christoffel word of slope p/q where p and q are nonnegative
coprime integers such that α = p/(p+ q).

For example, when α = 5/13, the lower sequence cα has period 0010010100101 which is the
lower Christoffel word of slope 5/8 and the upper sequence c′

α has period 1010010100100 which is
the upper Christoffel word of slope 5/8. When α is irrational, then cα and c′

α are not periodic. The
restrictions of cα and c′

α to Z≥1 are equal and correspond to the well-known one-sided characteristic
Sturmian sequence of slope α [216]. In this work, we consider biinfinite sequences as opposed to
one-sided sequences. Over the domain Z, we say that cα and c′

α are respectively the lower and
upper characteristic Sturmian sequences of slope α whenever α is irrational.

Sturmian sequences have many equivalent definitions, for example, in terms of aperiodic balanced
sequences [216], irrational rotations [38, 202], factor complexity [113] or return words [274]. On the
other hand, Christoffel words also have many equivalent definitions, including 14 characterizations
listed in [70], see also [72, 71]. A recent book [240] gathers exhaustively the combinatorial properties
of Christoffel words and uses them to prove two important theorems of Markoff for Diophantine
approximations and quadratic forms [207].

4.4 Pirillo’s theorem

A theorem of Pirillo [230] provides a nice characterization of Christoffel words of slope p/q where
p and q are positive coprime integers. If p and q are nonzero, the lower Christoffel word of slope
p/q starts with letter 0 and ends with letter 1, so it can be written as 0m1 for some finite word
m ∈ {0, 1}∗ and the corresponding upper Christoffel word is 1m0. Pirillo gave the following elegant
characterization of Christoffel words. Recall that two words w,w′ ∈ {0, 1}∗ are conjugate if there
exists u, v ∈ {0, 1}∗ such that w = uv and w′ = vu.

Theorem 4.1 (Pirillo’s theorem [230]). The word 0m1 ∈ {0, 1}∗ is a lower Christoffel word if and
only if 0m1 and 1m0 are conjugate.

Pirillo’s theorem is illustrated in Figure 4.4. We observe that the conjugacy of 0m1 into 1m0
is done via their factorization into a product of two palindromes: 0m1 = 00100 · 10100101 and
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4 Christoffel words and Markoff theory

0m1 = 0010010100101

1m0 = 1010010100100

(−8,−5)

(0, 0)

(8, 5)

Figure 4.4: Pirillo’s theorem characterizes Christoffel words: the lower Christoffel word 0m1 ∈ {0, 1}∗ is
conjugate to the upper Christoffel word 1m0.

1m0 = 10100101 · 00100. The factorization of 0m1 as a product of two palindromes and the fact
that the central word m is a palindrome [71, Prop. 4.2] is also a characterization of Christoffel
words, see [204] and [240, Theorem 12.2.10].

With Christophe Reutenauer, we used Theorem 4.1 to provide a d-dimensional extension of
Christoffel words [14]. Since then, I was wondering if Pirillo’s theorem could be extended to
characterize Sturmian sequences, but it was unclear which notion would replace conjugacy. An
open question asked by Sebastian Barbieri during his postdoctorate with us in Bordeaux (funded
by our ANR CODYS) coming from an earlier work of his in Vancouver with Brian Marcus on
Gibbs theory turned out to be the notion which was needed: indistinguishable asymptotic pairs. It
provides a new characterization of Sturmian sequences which works in higher dimensions as well.
This is expanded in Chapter 8 and Chapter 13.

4.5 Markoff numbers and the Markoff injectivity conjecture

A Markoff triple is a positive solution of the Diophantine equation x2 + y2 + z2 = 3xyz [207, 206].
Markoff triples can be defined recursively as follows: (1, 1, 1), (1, 2, 1) and (1, 5, 2) are Markoff triples
and if (x, y, z) is a Markoff triple with y ≥ x and y ≥ z, then (x, 3xy − z, y) and (y, 3yz − x, z) are
Markoff triples. This gives to the set of Markoff triple, the structure of a infinite binary tree, see
Figure 4.2. A list of small Markoff numbers (elements of a Markoff triple) is

1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, 1325, 1597, 2897, 4181, . . .

referenced as sequence A002559 in OEIS [221].
It is known that each Markoff number can be expressed in terms of a Christoffel word. More

precisely, let µ be the monoid homomorphism {0, 1}∗ → GL2(Z) defined by

µ(0) =
(

2 1
1 1

)
and µ(1) =

(
5 2
2 1

)
.

Each Markoff number is equal to µ(w)12 for some Christoffel word w [239], where M12 denotes the
element above the diagonal in a matrix M =

(
M11 M12
M21 M22

)
∈ GL2(Z).
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4.6 The Markoff property

For example, the Markoff number 194 is associated with the Christoffel word 00101 as it is the
entry at position (1, 2) in the matrix

µ(00101) =
(

2 1
1 1

)(
2 1
1 1

)(
5 2
2 1

)(
2 1
1 1

)(
5 2
2 1

)
=
(

463 194
284 119

)
.

Whether the map w 7→ µ(w)12 provides a bijection between Christoffel words and Markoff numbers
is a question (also known as the uniqueness conjecture and stated differently in [138]) that has
remained open for more than 100 years [27]. The conjecture can be expressed in terms of the
injectivity of the map w 7→ µ(w)12 [240, §3.3].

Conjecture 4.2 (Markoff Injectivity Conjecture). The map w 7→ µ(w)12 is injective on the set of
Christoffel words.

4.6 The Markoff property

It is worth recalling that balanced sequences appeared in the work of Markoff himself [206, 208]
under an equivalent condition, called Markoff property (M) in [238].

Definition 4.3. [238] We say that a biinfinite word s ∈ {0, 1}Z satisfies the Markoff property if
for any factorization s = uxyv, where {x, y} = {0, 1}, one has

• either ũ = v,

• or there is a factorization u = u′ym, v = m̃xv′.

The Markoff property is related to the Markoff spectrum. Let U = (ai)i∈Z be a biinfinite sequence
such that ai are positive integers. For i ∈ Z, let

λi(U) = ai + [0; ai+1, ai+2, . . . ] + [0; ai−1, ai−2, . . . ].

The Markoff supremum of U is
M(U) = sup

i∈Z
λi(U).

Two results of Markoff can be stated in terms of Christoffel words and balanced sequences as follows
where σ is the substitution from {0, 1}∗ to {1, 2}∗ defined by 0 7→ 11 and 1 7→ 22. It provides an
equivalence between sequences satisfying the Markoff property and sequences of positive integers
such that the Markoff supremum is at most 3. The equivalence between sequences satisfying the
Markoff property and balanced sequences was not proved by Markoff himself: it was stated without
proof in [116] and a proof was provided in [238].

Theorem 4.4 (Markoff). [238, Theorem 3.1 and 7.1] Let s ∈ {0, 1}Z be a biinfinite word. The
following conditions are equivalent:

• s satisfies the Markoff property,

• s is balanced,

• M(σ(s)) ≤ 3.

The Markoff supremum of a purely periodic balanced sequence can be computed from the Markoff
number associated to the Christoffel word which is a period of the sequence.

Theorem 4.5 (Markoff). [240, Theorem 6.2.1] Let w be some lower Christoffel word associated with
Markoff number m = µ(w)12. Let s be the biinfinite sequence ∞σ(w)∞. Then M(s) =

√
9− 4

m2 .
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4 Christoffel words and Markoff theory

4.7 Four classes of balanced sequences
Biinfinite balanced sequences can be split into four different types of sequences. Reutenauer pro-
posed the following refinement of the Markoff property [238] which was restated in [145] as follows.
If a biinfinite sequence u ∈ {0, 1}Z satisfies the Markoff property, then it falls into exactly one of
the following classes:

(M1) u cannot be written as u = p̃xyp where {x, y} = {0, 1} and the lengths of the Christoffel
words occurring in u are bounded;

(M2) u cannot be written as u = p̃xyp where {x, y} = {0, 1} and the lengths of the Christoffel
words occurring in u are unbounded;

(M3) u has a unique factorization u = p̃xyp where {x, y} = {0, 1};

(M4) u has at least two factorizations u = p̃xyp where {x, y} = {0, 1}.

Morse and Hedlund gave a classification of balanced biinfinite sequences into three classes (peri-
odic, Sturmian, skew) [216]. Since the Sturmian case naturally splits into two, Reutenauer proposed
the following four classes (MHi)i∈{1,2,3,4} and proved their equivalence with the (Mi).

Theorem 4.6. [238, Theorem 6.1] Let u ∈ {0, 1}Z be a balanced sequence. For every i ∈ {1, 2, 3, 4},
u satisfies (Mi) if and only if u satisfies (MHi) where

(MH1) u is a purely periodic word ∞w∞ for some Christoffel word w,

(MH2) u is a generic aperiodic Sturmian word, i.e., u = sα,ρ = s′
α,ρ for some α ∈ [0, 1]\Q and ρ ∈ R

such that Z ∩ αZ + ρ = ∅.

(MH3) u is a characteristic aperiodic Sturmian word, i.e., u = sα,ρ or u = s′
α,ρ for some α ∈ [0, 1]\Q

and ρ ∈ R such that Z ∩ αZ + ρ ̸= ∅.

(MH4) u is an ultimately periodic word but not purely periodic, i.e., u = · · ·xxyxx · · · or u =
· · · (ymx)(ymx)(ymy)(xmy)(xmy) · · · where {x, y} = {0, 1} and 0m1 is a Christoffel word.
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Chapter 5

Some Sturmian extensions

5.1 Tribonacci example

A generalization of the result of Morse and Hedlund was provided by Rauzy for a single example
[237]. Based on the right-infinite sequence often called the Tribonacci word

T = 1213121121312121312112131213121121312121...

which is fixed by 1 7→ 12, 2 7→ 13, 3 7→ 1, Rauzy proved that the system (XT , σ), where σ is
the shift action, is measurably conjugate to the toral rotation (T2, x 7→ x + (β−1, β−2)) where β
is the real root of x3 − x2 − x − 1, the characteristic polynomial of the incidence matrix of the
substitution. The coding of the toral translation is made through the partition into three parts of
a fundamental domain of T2 known as the Rauzy fractal [132, §7.4]. Proving that this holds for all
Pisot substitution is known as the Pisot Conjecture [28], an important and still open question.

Finding further generalizations was coined the term of Rauzy program in [81], a survey divided
into three parts: the good coding of k-interval exchange transformations (IETs); the bad coding of
a rotation on Tk; and the ugly coding of two rotations on Tk for k = 1. The IETs are the good
part since they behave well with induced transformations and admit continued fraction algorithms
[236, 271, 277, 47]. The bad part was much improved since then with various recent results using
multidimensional continued fraction algorithms including Brun’s algorithm [99] which provides
measurable-theoretic conjugacy with symbolic systems for almost every toral rotations on T2 [83,
268]. As the authors wrote in [81], the term ugly “refers to some esthetic difficulties in building
two-dimensional sequences by iteration of patterns”. Indeed, digital planes [40, 39, 81, 74, 76] are
typical objects that are described by the coding of two rotations on T1 and they are not built by
rectangular shaped substitutions.

5.2 Markov partitions for automorphisms of the torus

While Morse-Hedlund’s theorem deals with the coding of irrational rotations, other kinds of dy-
namical systems admit a symbolic representation. Hyperbolic automorphisms of the torus are one
example [200, 177]. Suppose that one starts at some position v ∈ R2 and moves according to the
successive images under the application of the map v 7→Mv with M = ( 1 1

1 0 ) as shown in Figure 5.1.
The map v 7→ Mv is an automorphism of R2/Z2 which is hyperbolic since M has no eigenvalue of
modulus 1. It allows one to code the orbit (Mkv)k∈Z as a sequence in {A,B,C}Z according to a
well-chosen partition P of a fundamental domain of R2/Z2 into three rectangles indexed by letters
in the set {A,B,C}. In Figure 5.1, the positive orbit (Mkv)k≥0 of the starting point v =

(
−7
10 ,

14
10

)T

is coded by the sequence CBABABCB . . . which avoids the patterns in F = {AA,BB,CC,CA}.
We denote the set of obtained sequences as XP,M . The partition of R2/Z2 is a Markov partition
for the automorphism because it has two important properties [200, §6.5]:
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Figure 5.1: The automorphism of R2/Z2 defined as v 7→Mv admits a Markov partition.

(C1) every sequence in XP,M is obtained from a unique starting point in R2/Z2,

(C2’) the set XP,M is a shift of finite type (SFT), i.e., there exists a finite set F of patterns such
that XP,M is the set of sequences in {A,B,C}Z which avoids the patterns in F .

Such Markov Partitions exist for all hyperbolic automorphisms of the torus [26, 258, 92] and
various kinds of diffeomorphisms [91], see also [176, 25, 175]. Surprisingly, it turns out that Markov
partitions also exist for toral Z2-rotations R and 2-dimensional subshifts XP,R.

5.3 From two-sided sequences to 2-dimensional configurations
One of our goal is to extend the behavior of Sturmian sequences beyond the 1-dimensional case by
considering d-dimensional configurations. We say that a configuration is an assignment of colored
beads from a finite set A to every coordinate of the lattice Zd. Are there rules describing how
to place colored beads in a configuration in such a way that it encodes rotations on a higher
dimensional torus?

This is related to a question of Adler: “how and to what extent can a dynamical system be represented
by a symbolic one” [25]. The kind of dynamical system we consider are toral Zd-rotations, that is,
Zd-actions by rotations on a torus.

When d = 1, the answer is given in terms of Sturmian sequences and factor complexity. While
Berthé and Vuillon [87] considered the coding of Z2-rotations on the 1-dimensional torus, we con-
sider Zd-rotations on the d-dimensional torus.

Can an answer to the question of Adler when d = 2 be made in terms of sets of configurations
avoiding a finite set of forbidden patterns known as subshifts of finite type and more precisely in
terms of aperiodic tilings by Wang tiles?

Such a possibility contrasts with the one-dimensional case, since Sturmian sequences can not be
described by a finite set of forbidden patterns (a one-dimensional shift of finite type is nonempty
if and only if it has a periodic point [200, §13.10]).

We explore this in more details in Part IV.
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Chapter 6

Aperiodic tilings

6.1 Aperiodic sets of Wang tiles

The study of aperiodic order [148, 51] gained a lot of interest since the discovery in 1982 of qua-
sicrystals by Shechtman [255] for which he was awarded the Nobel Prize in Chemistry in 2011.
The first known aperiodic structure was based on the notion of Wang tiles. Wang tiles can be
represented as unit square with colored edges, see Figure 6.4.

Given a finite set of Wang tiles T , we consider tilings of the Euclidean plane using arbitrarily
many translated (but not rotated) copies of the tiles in T . Tiles are placed on the integer lattice
points of the plane with their edges oriented horizontally and vertically. The tiling is valid if every
pair of contiguous edges have the same color. Deciding if a set of Wang tiles admits a valid tiling
of the plane is a difficult question known as the domino problem. Answering a question of Wang
[276], Berger proved that the domino problem is undecidable [67] using a reduction to the halting
problem of Turing machines. As noticed by Wang, if every set of Wang tiles that admits a valid
tiling of the plane would also admit a periodic tiling, then the domino problem would be decidable.
As a consequence, there exist aperiodic sets of Wang tiles. A set T of Wang tiles is called aperiodic
if there exists a valid tiling of the plane with the tiles from T and none of the valid tilings of the
plane with the tiles from T is invariant under a nonzero translation.

Berger constructed an aperiodic set made of 20426 Wang tiles [67], later reduced to 104 by himself
[66] and further reduced by others [180, 243]. Small aperiodic sets of Wang tiles include Ammann’s
16 tiles [148, p. 595], Kari’s 14 tiles [167] and Culik’s 13 tiles [114]. The search for the smallest
aperiodic set of Wang tiles continued until Jeandel and Rao proved the existence of an aperiodic
set T0 of 11 Wang tiles and that no set of Wang tiles of cardinality ≤ 10 is aperiodic [163]. Thus
their set, shown in Figure 6.4, is a smallest possible set of aperiodic Wang tiles.

6.2 The Ammann set of 16 Wang tiles

Noteworthy examples of aperiodic tilings were discovered by Ammann, a mathematician’s hobbyist,
in the 1970’s and 1980’s. Although Ammann had a great influence on the early developments made
in the theory of aperiodic tilings, he published a single article in his life [34]. He learned about
Penrose tilings while reading Martin Gardner in popular science journals exchanges letters with
him [253]. From that, he went on to discover new aperiodic shapes and how to put markings on
them (now called Ammann bars) in a very elegant way. As we learn from the nice article of Marjorie
Senechal [253], Robert Ammann was having symptoms similar to autism which partly explains the
mystery surrounding him and his discoveries. It is a chance that some of his great intuitions were
shared to us as they may have not delivered all their secrets.

One of shapes discovered by Ammann is called the Ammann A2 L-shaped tiles [34] (also studied
in [29, 126]); see Figure 6.1.
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φ2

Figure 6.1: Two shapes belonging to the Ammann A2 family. The matching conditions are given by what
are called Ammann bars appearing as dashed and solid lines in the interior of the tiles and which
must continue straight across the edges of the tiling. This is a reproduction of Figure 10.4.1 from
[148]. See also Figure 12 from [29].

In a tiling of the plane by the two shapes shown in Figure 6.1 respecting the matching condition,
there appear what are called Ammann bars. In this case, the slopes of the Ammann bars takes four
different values: two slope values for the dashed Ammann bars and two slope values for the solid
Ammann bars. As explained in [148, p.594–598], the solid bars can be regarded as the edges of a
new tiling by rhombs and parallelograms, for which the dashed bars can be regarded as markings on
the tiles specifying the matching conditions. Sixteen parallelogram tiles arise from this construction
which can be recoded as 16 Wang tiles. The Ammann set of 16 Wang tiles are shown in Figure 6.2.
The tiling of a rectangle with the tiles is shown in Figure 6.3.
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Figure 6.2: The Ammann aperiodic set of 16 Wang tiles [148, p.595, Figure 11.1.13].

6.3 The Kari–Culik sets of Wang tiles

The smallest sets of aperiodic Wang tiles until 2015 were discovered by Kari and Culik in 1996.
Kari [167] proved that a well-chosen set of 14 Wang tiles admits tilings of the plane, and that
none of them is periodic. The proof that they are not periodic is cleverly short. It is based on an
arithmetic interpretation of the edge labels of the Wang tiles. The tiles have labels r, t, ℓ, b ∈ Q
satisfying an equation

r

t

ℓ

b

qt+ ℓ = b+ r (6.1)
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Figure 6.3: Valid tiling of a rectangle with Ammann tiles.

for some q ∈ Q. We may interpret the Wang tile as a computation (the multiplication by q) with
value t as an input and b as an output. The value ℓ is a carry input on the left and r is a carry
output on the right. Kari [167] proposed a set of four tiles satisfying (6.1) with q = 2 and ten tiles
with q = 2

3 . The proof of the non-existence of a periodic tiling with those 14 tiles uses the fact
that the equation 2m3n = 1 has only one solution over the integers (m = n = 0). Based on the
same idea, Culik [114] proposed a smaller aperiodic set of 13 tiles (four tiles satisfying (6.1) with
q = 3 and nine tiles with q = 1

2). Note that generalizations of Kari–Culik tilings exist [128] and
that further results were obtained about their entropy [125] and on a minimal subsystem [256].

Among aperiodic tilings of the plane by Wang tiles, Kari and Culik sets seem like outliers. The
aperiodicity of Penrose tiles [228], Berger tiles [67], Robinson tiles [243], Knuth tiles [180], Ammann
tiles [148, 34] can be explained by the hierarchical decomposition of their tilings. Often, aperiodic
tilings have a self-similar structure [264, 263, 233, 232, 31] and this is the case for recently discovered
aperiodic geometrical tiles [262, 260, 259]. However, Kari and Culik tilings have positive entropy.
Thus, they are not self-similar and do not possess a hierarchical decomposition [125]. Note that the
absence of hierarchical decomposition also follows from a cylindricity argument proposed by Thierry
Monteil and explained in [125, §4.2]. Moreover, except some extensions of Kari and Culik sets [128,
§6], no other known aperiodic sets of tiles satisfy equations explaining their non-periodicity.

6.4 Jeandel-Rao Wang tiles
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Figure 6.4: The aperiodic set T0 of 11 Wang tiles discovered by Jeandel and Rao in 2015 [163].

For almost twenty years, the Kari and Culik sets of Wang tiles were the smallest known aperiodic
sets of Wang tiles. In 2015, Jeandel and Rao performed an exhaustive search on all sets of Wang
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6 Aperiodic tilings

tiles of cardinality up to 11 [163] and proved that sets of Wang tiles of cardinality at most 10 either
do not tile the plane or tile the plane and one of the valid tilings is periodic. Moreover, they provided
a list of 33 sets of 11 Wang tiles considered to be candidates for being aperiodic. One of candidates
was intriguing because Fibonacci numbers appeared in the structure of the transducers involved in
the computation of valid tilings. Jeandel and Rao focused on the intriguing candidate, shown in
Figure 6.4, and they proved it to be aperiodic. The set of valid configurations over these 11 tiles
forms a subshift that we call the Jeandel–Rao Wang shift. An equivalent geometric representation
of their set of 11 tiles is shown in Figure 6.5. A rectangular pattern with Jeandel-Rao tiles is shown
in Figure 6.6.

0 1 2 3 4 5 6 7 8 9 10

Figure 6.5: Jeandel-Rao tiles can be encoded into a set of equivalent geometrical shapes in the sense that
every tiling using Jeandel-Rao tiles can be transformed into a unique tiling with the corresponding
geometrical shapes and vice versa.

Recall that we consider Wang tilings from the point of view of symbolic dynamics [242]. While a
tiling by a set of Wang tiles T is a tiling of the plane R2 whose validity is preserved by translations
of R2 (leading to the notion of hull, see [51]), we prefer to consider maps Z2 → T , that we
call configurations, whose validity is preserved by translations of Z2. The set ΩT of all valid
configurations Z2 → T is called a Wang shift as it is closed under the shift σ by integer translates.
The passage from Wang shifts (Z2-actions) to Wang tiling dynamical systems (R2-action) can be
made with the 2-dimensional suspension of the former as in the classical construction of a “flow
under a function” in Ergodic Theory, see [241].

The aperiodicity of the Jeandel-Rao set of 11 Wang tiles follows from the decomposition of
tilings as horizontal strips of height 4 or 5 (see Figure 6.6). Using the representation of Wang tiles
by transducers, Jeandel and Rao proved that the language of sequences describing the heights of
consecutive horizontal strips in the decomposition is exactly the language of the Fibonacci word
on the alphabet {4, 5} [163]. This proves the absence of any vertical period in every tiling with
Jeandel-Rao tiles. This is enough to conclude aperiodicity in all directions, see [51, Prop. 5.9]. The
presence of the Fibonacci word in the vertical structure of Jeandel-Rao tilings was a first hint that
Jeandel-Rao tilings are related to irrational rotations on a torus.

6.5 Other aperiodic sets of tiles
There are many other aperiodic sets of tiles often discovered by amateur mathematicians like an
aperiodic hexagonal tile by Joan Taylor [262] or the recent hat monotile discovered by David Smith
[260].

Smith and coauthors presented a single shape , a 13-edge polygon called the hat, whose
isometric copies tile the plane but never periodically; see Figure 6.7. The hat monotile attracted a
lot of attention [261, 50, 30]. Two months later the same authors discovered another aperiodic tile
called Spectre which does not need its mirror image to tile the plane [259]. Tilings by the Spectre
are not all combinatorially equivalent to tilings by the hat: some are periodic (if the reflected tile
is allowed). But every tiling by the hat tile is combinatorially equivalent to some Spectre tiling.
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6.5 Other aperiodic sets of tiles

69sage: from slabbe.arXiv_1903_06137 import jeandel_rao_tiles
70sage: from slabbe.arXiv_1903_06137 import geometric_edges_shapes
71sage: T0 = jeandel_rao_tiles()
72sage: tiling = T0.solver(20,20).solve(solver="glucose")
73sage: draw_H, draw_V = geometric_edges_shapes()
74sage: tikz = tiling.tikz(draw_H=draw_H,draw_V=draw_V, id=True, label=False,
75....: scale="1,very␣thick", font=r"\bfseries")
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Figure 6.6: A 20× 20 Jeandel-Rao tiling found using Glucose SAT solver. There are two types of rows: rows
that contain tile 0 or tile 1 and rows that do not contain tile 0 or 1. It was proved by Jeandel
and Rao that the distance between consecutive rows of 0/1 is either 4 or 5.
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Figure 6.7: Freshly laser-cut copies of the hat, made at the EirLab of Bordeaux INP, January 2025.

50



Chapter 7

Cut and project schemes

Since the contribution of N. G. de Bruijn [98], we know that Penrose tilings are obtained as the
projection of discrete surfaces in a 5-dimensional space onto a 2-dimensional plane. This major
discovery was the first time that some aperiodic tilings were expressed as the projection of a higher
dimensional cubic structure. However, this construction was formalized earlier in a more general
setup by Meyer [211] as noticed later by Lagarias [186] and Moody [213]. This construction is
known as model set (or cut and project sets) within cut and project schemes [51].

In one dimension, the fact that Sturmian sequences are codings of rotations implies that they
can be seen as model sets of cut and project schemes, see [58, 51]. Other typical examples include
Ammann-Beenker tilings [55] and Taylor-Socolar aperiodic hexagonal tilings for which Lee and
Moody gave a description in terms of model sets [192]. More recently, it was proved that the
aperiodic tilings generated by the Hat and Spectre monotile [260, 259] are described by 4-to-2 cut
and project schemes [50, 49, 48].

In this chapter, we introduce cut and project schemes and model sets following the notation
used in the book [51]. Classical cut and project schemes turned out to be too restrictive in order
to describe properly the Jeandel-Rao tilings by Wang tiles (which can be seen as configurations
over Z2) and multidimensional Sturmian configurations over Zd. In these works, we needed to
introduced a relaxed definition of cut and project schemes allowing degenerate cases.

The first section introduce the classical definition where the projection into the physical space is
injective when restricted to the lattice. The second section introduces a notion of degenerate cut
and project scheme where the injectivity condition is relaxed, but still allowing the star map to be
defined. In both sections, we illustrates the notions in the case of Sturmian sequences. Degenerate
cut and project schemes are used in this thesis to describe Jeandel-Rao tilings, see Section 11.3,
and multidimensional Sturmian configurations (Section 13.3).

7.1 Cut and project schemes

We recall from [51, §7.2] the definition of cut and project scheme and we reuse their notation.

Definition 7.1. A cut and project scheme (CPS) is a triple (Rd, H,L) with a (compactly
generated) locally compact Abelian group (LCAG) H, a lattice L in Rd × H and the two natural
projections π : Rd ×H → Rd and πint : Rd ×H → H, subject to the conditions that π|L is injective
and that πint(L) is dense in H.

A CPS is called Euclidean when H = Rm for some m ∈ N. Such a Euclidean CPS is said to be
(m+ d)-to-d.
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7 Cut and project schemes

A general CPS is summarized in the following diagram.

Rd Rd ×H H

π(L) L πint(L)

L L⋆

π πint

⊂ ⊂

1−1

⊂ dense

⋆

The image is denoted L = π(L). Since for a given CPS, π is a bijection between L and L, there is
a well-defined mapping ⋆ : L→ H given by

x 7→ x⋆ := πint
(
(π|L)−1(x)

)

where (π|L)−1(x) is the unique point in the set L ∩ π−1(x). This mapping is called the star map
of the CPS. The ⋆-image of L is denoted by L⋆. The set L can be viewed as a diagonal embedding
of L as

L = {(x, x⋆) | x ∈ L}.
For a given CPS (Rd, H,L) and a (general) set A ⊂ H,

⋏(A) := {x ∈ L | x⋆ ∈ A}

is the projection set within the CPS. The set A is called its acceptance set, window or coding
set.

Definition 7.2. If A ⊂ H is a relatively compact set with non-empty interior, the projection set
⋏(A), or any translate t+ ⋏(A) with t ∈ Rd, is called a model set.

A model set is termed regular when µH(∂A) = 0, where µH is the Haar measure of H. If
L⋆ ∩ ∂A = ∅, the model set is called generic. If the window is not in a generic position (meaning
that L⋆ ∩ ∂A ̸= ∅), the corresponding model set is called singular.

The shape of the acceptance set A is important and implies structure on the model set Λ =
t + ⋏(A). For example, if A is relatively compact, Λ has finite local complexity and thus also is
uniformly discrete; if A◦ ̸= ∅, Λ is relatively dense. If Λ is a model set, it is also a Meyer set,
[51, Prop. 7.5]. For regular model set Λ = ⋏(A) with a compact window A = A◦, it is known [51,
Theorem 7.2] that the points {x⋆ | x ∈ Λ} are uniformly distributed in A.

Linear repetitivity of model sets is an important notion. Recall that a Delone set Y ⊆ Rd

is called linearly repetitive if there exists a constant C > 0 such that, for any r ≥ 1, every
patch of size r in Y occurs in every ball of diameter Cr in Rd. It was shown by Lagarias and
Pleasants in [187, Theorem 6.1] that linear repetitivity of a Delone set implies the existence of
strict uniform patch frequencies, equivalently the associated dynamical system on the hull of the
point set is strictly ergodic (minimal and uniquely ergodic). As a consequence [187, Cor. 6.1], a
linearly repetitive Delone set X in Rn has a unique autocorrelation measure γX . This measure γX

is a pure discrete measure supported on X −X. In particular X is diffractive. A characterization
of linearly repetitive model sets ⋏(A) for cubical acceptance set A was recently proved by Haynes,
Koivusalo and Walton [155].

Example 7.3. In this example, we illustrate the cut and project scheme associated to a Sturmian
sequence of slope α with α > 0. The cut and project scheme is given by the 5-uple (H,K,L, π, πint)
where H = R, K = R, L = Z2 and

π : R2 → R
(x1, x2) 7→ x1 + αx2

and πint : R2 → R
(x1, x2) 7→ −αx1 + x2
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7.2 Degenerate cut and project schemes

The window W = [−1, α) defines the model set ⋏(W ) ⊂ Z + Zα. Moreover, the window W is
naturally partitioned into the two sets Wa = [α − 1, α) and Wb = [−1, α − 1). They define the
subsets ⋏(Wa) and ⋏(Wb) represented with red dots and blue squares on the physical space in the
image below.
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e
R

physical space R

Wa = [α− 1, α]
Wb = [−1, α− 1]

⋏(Wa) = {x ∈ L | x⋆ ∈Wa} ⊂ Z + Zα
⋏(Wb) = {x ∈ L | x⋆ ∈Wb} ⊂ Z + Zα

π

πint

slope α

7.2 Degenerate cut and project schemes

When considering symbolic dynamics where sequences are defined over Z and configurations are
defined over Zd, the condition that πL is injective is problematic. To describe Jeandel-Rao tilings
over Z2 and multidimensional Sturmian configurations over Zd, it is convenient to consider a relaxed
version of cut and project schemes where the projection in the physical space might not be injective
when restricted to the lattice.

We try to formalize this degenerate extension in this section together with an example in the
case of Sturmian sequences.

Let H be a locally compact abelian group and K = Rd for some d ≥ 1. We call K the physical
space and H the internal space. Let m ≥ 1 be an integer. Let π : Rm+d → K be a projection on
the physical space and πint : Rm+d → H be a projection on the internal space:

K Rm+d Hπ πint

Then, let L ⊂ Rd be a co-compact lattice with the property that πint(L) is dense in H. But, we no
longer require that π|L be injective.

K Rm+d H

π(L) L πint(L)

π πint

⊂ ⊂ ⊂dense

The image of the lattice in the physical space is denoted L = π(L).

Definition 7.4. A relaxed (m+ d)-to-d cut and project scheme is a 5-uple (H,K,L, π, πint)
satisfying

Kerπ ∩ L ⊆ Kerπint. (7.1)

A relaxed cut and project scheme such that π|L is not injective is called a degenerate (m+d)-to-d
cut and project scheme.

53



7 Cut and project schemes

We may observe that classical cut and project schemes are relaxed cut and project schemes
because Ker(π) ∩ L = {0} when π|L is injective. Thus condition (7.1) is satisfied. For relaxed cut
and project schemes, there is also a well-defined mapping ⋆ : L→ H given by

x 7→ x⋆ := πint
(
L ∩ π−1(x)

)
.

where for every x ∈ L, x⋆ is the only element of πint(L) obtained by applying the map πint to an
element of π−1({x}) ∩ L. This mapping is called the star map of the CPS. The ⋆-image of L is
denoted by L⋆.

A relaxed CPS is summarized in the following diagram.

K Rm+d H

π(L) L πint(L)

L L⋆

π πint

⊂ ⊂ ⊂ dense

⋆

For a given window W ⊂ H in the internal space,

⋏(W ) := {x ∈ L | x⋆ ∈W}

is the projection set within the cut and project scheme.
Let us now consider some examples. We may change the projection in the physical space used in

Example 7.3 so that the distance between each point in ⋏(W ) is uniform. This gives a description
of the positions of the letters in a characteristic Sturmian sequence using a degenerate cut and
project scheme. But this can not be done without removing the condition that π|L is injective.

Example 7.5. In this example, we illustrate the degenerate cut and project scheme associated to
a Sturmian sequence of slope α with α > 0. The cut and project scheme is given by the 5-uple
(H,K,L, π, πint) where the internal space is H = R/(1 +α)Z, the physical space is K = R, L = Z2

and
π : R2 → R

(x1, x2) 7→ x1 + x2
and πint : R2 → R/(1 + α)Z

(x1, x2) 7→ −αx1 + x2.

Notice that if (x1, x2) ∈ Z2, then πint(x1, x2) = −αx1 + x2 = x1 + x2. The window W = [−1, α)
defines the model set ⋏(W ) = Z. The window W is naturally partitioned into the two sets Wa =
[α − 1, α) and Wb = [−1, α − 1). They define the subsets ⋏(Wa) and ⋏(Wb) represented with red
dots and blue squares at integer positions on the physical space in the image below.
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Wa = [α− 1, α]
Wb = [−1, α− 1]

⋏(Wa) = {x ∈ L | x⋆ ∈Wa} ⊂ Z
⋏(Wb) = {x ∈ L | x⋆ ∈Wb} ⊂ Z

π

πint

slope α
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7.2 Degenerate cut and project schemes

The subsets ⋏(Wa) and ⋏(Wb) are the positions of the letters in a characteristic Sturmian sequence.
The projection π|L : L → R is no longer injective, but for every x ∈ π(L), the lattice points in

the fiber π−1(x) ∩ L are mapped on the same point in the internal space R/(1 + α)Z under πint.
More precisely, condition (7.1) is satisfied:

Ker(π) ∩ L = {(a,−a) : a ∈ Z} ⊂ Ker(πint).

This is illustrated in the image below.
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physical space R

π

πint

slope α
Wa = [α− 1, α]
Wb = [−1, α− 1]

⋏(Wa) = {x ∈ L | x⋆ ∈Wa} ⊂ Z
⋏(Wb) = {x ∈ L | x⋆ ∈Wb} ⊂ Z

Finally, if (x1, x2) ∈ L = Z2, then we have

π(x1, x2) = x1 + x2,

πint(x1, x2) = −αx1 + x2 = x1 + x2 (mod 1 + α).

Thus, the star map is the natural projection Z→ R/(1 + α)Z:

⋆ : x 7→ x (mod 1 + α).

The fact that the ⋆ map is the identity modulo a lattice is what allows to identify the physical
space with the internal space as in the image below.

in
te

rn
al

sp
ac

e
R
/
(1

+
α

)Z

physical space R

⋆ : x 7→ x mod (1 + α)

Wa = [α− 1, α]
Wb = [−1, α− 1]

⋏(Wa) = {x ∈ L | x⋆ ∈Wa} ⊂ Z
⋏(Wb) = {x ∈ L | x⋆ ∈Wb} ⊂ Z

Note that even if π|L is not injective, the data of the cut and project scheme can still be deduced
from the model set ⋏(W ) (unless ⋏(W ) is a lattice itself). For example, using projection π(x1, x2) =
x1 + 2x2 instead in Example 7.3 would still allow to deduce that the point set ⋏(W ) is a 2-to-1 cut
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7 Cut and project schemes

and project scheme. Each red point is followed by a short interval, each blue point is followed by
a long interval.

However, when using projection π(x1, x2) = x1 + x2 as in Example 7.5, the distance between
consecutive points is uniform. It becomes impossible to guess the 2-to-1 cut and project scheme
only from the point set ⋏(W ) because ⋏(W ) is Z, a uniformly distributed point set!

Remark 7.6. Within a degenerate cut and project scheme, if the model set ⋏(W ) is a lattice, then
we need symbolic dynamics to encode how the points were projected. In this limit and degenerate
case, the model set ⋏(W ) is more appropriately described by a configuration ⋏(W )→ A for some
set A of symbols and a topological partition W = ∪a∈AWa of the window.

The construction of Jeandel-Rao configurations Z2 → {0, 1, . . . , 10} from 4-to-2 cut and project
schemes follows this idea, see Section 11.3. Moreover, extending Sturmian sequences to multidi-
mensional configurations Zd → {0, 1, . . . , d} needs the same kind of degenerate (d+ 1)-to-d cut and
project schemes, see Section 13.3.
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Chapter 8

A new characterization of Sturmian se-
quences

8.1 Indistinguishable asymptotic pairs
In this section, we present a surprising connection between Sturmian sequences and asymptotic
pairs satisfying a natural combinatorial property which originates in thermodynamical formalism.
This property characterizes asymptotic pairs which induce the trivial linear functional on a space
of continuous and shift-invariant cocycles on the asymptotic relation of the full Z-shift. See Section
3 of [60] for further details.

The characterization of indistinguishable asymptotic pairs was presented to Štěpán Starosta and
me by Sebastián Barbieri during a short stay in Prague in Fall 2019 funded by bilateral PHC
Barrande project. The hypothesis lead to so many overlaps between factors of the sequences that it
was expected to deduce periodicity of the solution using Fine and Wilf theorem. It turned out that
nonperiodic sequences are possible (including Sturmian sequences) and that was a nice surprise. We
split our work into two articles. In this section, we present the characterization of indistinguishable
asymptotic pairs over Z [3]. The characterization of indistinguishable asymptotic pairs over Zd was
more time-consuming [2]: it is presented in Chapter 13.

Concretely, given a finite set Σ, we consider the space of sequences ΣZ = {x : Z → Σ} endowed
with the prodiscrete topology and the shift action Z σ↷ ΣZ. In this setting, two sequences x, y ∈ ΣZ

are asymptotic if x and y differ in finitely many positions of Z. The finite set F = {n ∈ Z : xn ̸=
yn} is called the difference set of (x, y).

Given two asymptotic sequences x, y ∈ ΣZ with the difference set F , we want to compare the
number of occurrences of a fixed pattern. As x and y are asymptotic, occurrences of patterns whose
support do not intersect F are the same, so we only need to consider the occurrences of patterns
that appear intersecting F . As an example, we can take a fixed symbol a ∈ Σ and define ∆a(x, y)
as the number of positions n ∈ F such that yn = a minus the number of positions n ∈ F such that
xn = a. As F is finite, this value is well defined. More generally, for any given pattern p : S → Σ
where S is a finite subset of Z, we can consider the difference ∆p(x, y) of the number of occurrences
of p in y intersecting F minus the number of occurrences of p in x intersecting F .

We say that (x, y) is an indistinguishable asymptotic pair if (x, y) is asymptotic and ∆p(x, y) =
0 for every pattern p. A trivial example of an indistinguishable asymptotic pair is (x, x) for any
x ∈ ΣZ. Another simple example is x, y ∈ {0, 1}Z where x is equal to 1 at the origin, and 0
everywhere else, and y is equal to 1 at some nonzero n ∈ Z and 0 everywhere else. Note that in
both of these examples x and y lie on the same orbit of Z σ↷ ΣZ.

In [60] the authors define the following norm on asymptotic sequences of ΣZ

∥(x, y)∥∗NS = sup
S⊆Z

S finite

1
|S|

∑

p∈ΣS

|∆p(x, y)|.
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8 A new characterization of Sturmian sequences

Every asymptotic pair induces an evaluation map on the space of continuous cocycles on the
equivalence relation of asymptotic pairs. The authors show that this norm coincides with the dual
norm in the space of linear functionals on the space of continuous cocycles. In other words, the
asymptotic pairs which induce the trivial linear functional are precisely the indistinguishable pairs.
In this work, we provide a full characterization of which asymptotic pairs induce the trivial linear
functional.

Using the notion of indistinguishability, we provide a characterization of the lower and the upper
characteristic Sturmian sequences. Recall that the lower and upper sequences cα and c′

α are given
respectively by

cα : Z → {0, 1}
n 7→ ⌊α(n+ 1)⌋ − ⌊αn⌋ and c′

α : Z → {0, 1}
n 7→ ⌈α(n+ 1)⌉ − ⌈αn⌉.

where α ∈ [0, 1]. Note that the fact that cα and c′
α form an asymptotic pair as biinfinite sequences

was observed by Hedlund [156]. We proved the following result.

Theorem 8.1 ([3]). Let x, y ∈ {0, 1}Z and assume that x is recurrent. The pair (x, y) is an
indistinguishable asymptotic pair with difference set F = {−1, 0} such that x−1x0 = 10 and y−1y0 =
01 if and only if there exists α ∈ [0, 1] \ Q such that x = cα and y = c′

α are the lower and upper
characteristic Sturmian sequences of slope α.

In particular, for all n ∈ N the words x−nx−n+1 · · ·xn−1 and y−ny−n+1 · · · yn−1 of length 2n are
optimal representations of the language of cα as both contain exactly one occurrence of every factor
of length n.

Corollary 8.2 ([3]). If x, y ∈ ΣZ is a non-trivial indistinguishable asymptotic pair with difference
set F = {−1, 0}, then each of the words x−nx−n+1 · · ·xn−1 and y−ny−n+1 · · · yn−1 contain exactly
one occurrence of each word in Ln(x).

Removing the hypothesis that x is recurrent, we obtain a unifying description of the lower and
upper characteristic Sturmian sequences and their limits as their slope tends towards a rational
value.

Theorem 8.3 ([3]). Let x, y ∈ {0, 1}Z. The pair (x, y) is an indistinguishable asymptotic pair with
difference set F = {−1, 0} such that x−1x0 = 10 and y−1y0 = 01 if and only if there exists (αn)n∈N
with αn ∈ [0, 1] \Q such that

x = lim
n→∞

cαn and y = lim
n→∞

c′
αn
.

In the case where x is not recurrent, then x and y lie on the same orbit and there exist coprime
integers p, q ∈ Z≥0 such that (x, y) is the limit of asymptotic pairs formed by the lower and
upper characteristic Sturmian sequences of slope αn as αn converges toward the rational slope
p/(p+q) ∈ [0, 1]∩Q either from above or from below, see [3, Theorem 4.5]. Limits of the lower and
upper characteristic Sturmian sequences as their slope tends to a rational number are expressed in
terms of Christoffel words, see see [3, Lemma 4.2].

Theorem 8.1 and Theorem 8.3 are related to the famous theorem of Pirillo [230] (Theorem 4.1)
which provides a characterization of Christoffel words of slope p/q where p and q are positive
coprime integers. Pirillo’s theorem can be restated for biinfinite sequences as follows: cα is the
lower sequence associated to the rational slope α = p/(p+q) for some coprime nonnegative integers
p, q if and only if cα is a shift of c′

α.
It is natural to ask if there is an analogous statement which holds as we take the limit p

p+q → α
for some irrational α ∈ [0, 1] \ Q. In this light, Theorem 8.3 can be considered as an extension
of Pirillo’s theorem to aperiodic biinfinite sequences where the notion of conjugacy of words is
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8.2 Indistinguishable asymptotic pairs and the Markoff property

replaced by the notion of indistinguishability of an asymptotic pair. This seems to be the correct
approach since other alternatives (e.g., having the same language, see [3, Remark 3.8]) fail.

The next result provides a full characterization of non-trivial indistinguishable asymptotic pairs
for Z which does not depend upon the form of the difference set or the alphabet. More precisely,
we show that every indistinguishable asymptotic pair can be obtained from limits of pairs of lower
and upper characteristic Sturmian sequences by means of shifts and substitutions.

Given finite sets Σ,Γ, a map φ : Σ → Γ+ which replaces symbols of Σ by nonempty words on
Γ is called a substitution. This map is naturally extended by concatenation to a continuous map
φ : ΣZ → ΓZ.

Theorem 8.4 ([3]). Let Σ be a finite alphabet and x, y ∈ ΣZ a non-trivial asymptotic pair. Then
x, y is indistinguishable if and only if either

• x is recurrent and there exists α ∈ [0, 1] \ Q, a substitution φ : {0, 1} → Σ+ and an integer
m ∈ Z such that

{x, y} = {σmφ(σ(cα)), σmφ(σ(c′
α))},

• x is not recurrent and there exists a substitution φ : {0, 1} → Σ+ and an integer m ∈ Z such
that

{x, y} = {σmφ(∞0.10∞), σmφ(∞0.010∞)}.

This means that every indistinguishable asymptotic pair in Z consists either of (1) two sequences
in the same orbit, which are shifts of a sequence of the form ∞v.uv∞ for some u, v ∈ Σ+, or (2)
two sequences which, up to translation, can be obtained through a substitution from a pair of
lower and upper characteristic Sturmian sequences. In simpler terms, all non-trivial examples of
one-dimensional indistinguishable asymptotic pairs arise from irrational circle rotations. The proof
of Theorem 8.4 is based on the well-known notions of return words and derived sequences [127].

8.2 Indistinguishable asymptotic pairs and the Markoff property

In this section, we give equivalent conditions for balanced sequences satisfying cases (M3) or (M4)
of the Markoff property. Cases (M3) and (M4) can be expressed in terms of limits of mechanical
words toward an irrational or rational slope from above or from below which were shown to be
equivalent to sequences that belong to an indistinguishable asymptotic pair [3].

In the statement that follows, we denote the position of the origin of a biinfinite sequence s =
· · · s−2s−1.s0s1s2 · · · ∈ ΣZ with a dot (.) between positions −1 and 0.

Theorem 8.5 ([11]). Let s ∈ {0, 1}Z and n0 ∈ Z. The following are equivalent conditions describ-
ing balanced sequences satisfying Markoff property (M3) or (M4):

1. the sequence s has a factorization σn0s = p̃x.yp where {x, y} = {0, 1};

2. there exists a sequence (αk)k∈Z≥0 with αk ∈ [0, 1] \ Q such that σn0s = limk→∞ sαk,0 or
σn0s = limk→∞ s′

αk,0;

3. there exists a sequence t ∈ {0, 1}Z such that (s, t) is an indistinguishable asymptotic pair with
difference set {n0 − 1, n0}.
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8 A new characterization of Sturmian sequences

8.3 Open questions
Among the natural question is whether indistinguishable asymptotic pairs leads to interesting
generalizations of Sturmian sequences in higher dimension. We have made progress on this question
for the generic case. These results are summarized in Chapter 13.

A recent work considered the notion of attractors in the context of biinfinite sequences. They
obtained an independent characterization of balanced sequences, including skew ones [54]. For
a biinfinite sequence x ∈ ΣZ, an attractor is a finite subset Γ ⊂ Z such that every word in the
language of x has at least one occurrence whose support intersect the set Γ. When (x, y) is an
indistinguishable asymptotic pair, it is an easy consequence that x and y have an attractor: it is
the difference set of x and y.

What Béaur, Gheeraert and de Menibus proved is that biinfinite sequences having a finite at-
tractor are balanced sequences and their images under a substitution. A corollary of their result
and ours is the following.

Corollary 8.6. Let x ∈ ΣZ. The sequence x has a finite attractor if and only if there exists y ∈ ΣZ

such that (x, y) is an indistinguishable asymptotic pair.

However, it is remains unclear how to directly construct y from x. In other words, we can ask
the following question:

Question 8.7. Does there exist a simpler direct proof of Corollary 8.6?

62



Chapter 9

Contributions to the Markoff injectiv-
ity conjecture

9.1 The Markoff injectivity conjecture on the language of a bal-
anced sequence

In [214], a q-analog of rational numbers and of continued fractions were introduced. This was the
inspiration for several advances [210, 224, 112, 62, 166] and among them a q-analog of Markoff
triples [181]. A q-analog of the matrices µ(0) and µ(1) was proposed in [191], which in terms of

Lq =
(
q 0
q 1

)
and Rq =

(
q 1
0 1

)
,

can be written as

µq(0) = RqLq =
(
q + q2 1
q 1

)
,

µq(1) = RqRqLqLq =
(
q + 2q2 + q3 + q4 1 + q

q + q2 1

)
.

It extends to a morphism of monoids µq : {0, 1}∗ → GL2(Z[q±1]). This q-analog satisfies that
µ1(w) = µ(w) for every w ∈ {0, 1}∗. Thus if w is a Christoffel word, then the entry above the
diagonal µq(w)12 is a polynomial of indeterminate q with nonnegative integer coefficients such that
it is a Markoff number when evaluated at q = 1. For example,

µq(00101)12 = 1 + 4q + 10q2 + 18q3 + 27q4 + 33q5 + 33q6 + 29q7 + 21q8 + 12q9 + 5q10 + q11

which, when evaluated at q = 1, is equal to

µ1(00101)12 = 1 + 4 + 10 + 18 + 27 + 33 + 33 + 29 + 21 + 12 + 5 + 1 = 194.

With Mélodie Lapointe, we proved that the map w 7→ µq(w)12 is strictly increasing with respect
to the radix order on the language of a fixed balanced sequence [11]. Recall that the radix order is
defined for every u, v ∈ {0, 1}∗ as

u <radix v if
{
|u| < |v| or
|u| = |v| and u <lex v.

Also we define a partial order ≺ on Z[q] as

f ≺ g if and only if f ̸= g and g − f ∈ Z≥0[q].
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9 Contributions to the Markoff injectivity conjecture

Theorem 9.1 ([11]). Let s ∈ {0, 1}Z be a balanced sequence and u, v ∈ L(s) be two factors in the
language of s. If u <radix v, then µq(u)12 ≺ µq(v)12, i.e., µq(v)12−µq(u)12 is a nonzero polynomial
of indeterminate q with nonnegative integer coefficients.

The proof of Theorem 9.1 is based on Theorem 8.5 and Corollary 8.2 and follows closely the
proof for the case when q = 1 made earlier by Lapointe and Reutenauer [190].

As a consequence of Theorem 9.1, we prove injectivity of w 7→ µq(w)12 when restricted to the
language of a given balanced sequence.

Corollary 9.2 ([11]). Let s ∈ {0, 1}Z be a balanced sequence. The map w 7→ µq(w)12 is injective
over the language L(s).

9.2 A q-analog of the Markoff injectivity conjecture
In a follow-up work with Mélodie Lapointe and Wolfgang Steiner, we went one step further and
prove a q-analog of the Markoff Injectivity Conjecture.

Theorem 9.3 ([12]). The map w 7→ µq(w)12 is injective on the set of Christoffel words.

The proof Theorem 9.3 is short and is based on the evaluation at q = exp(iπ/3). Other roots of
unity provide some information on the original problem, which corresponds to the case q = 1.

9.3 Open questions
The Markoff injectivity conjecture remains open.

Question 9.4. Is Theorem 9.3 helpful to prove Conjecture 4.2?
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Chapter 10

Almost everywhere balanced sequences
of complexity 2n+1

There exist many other generalizations of Sturmian words over larger alphabets, each focusing on
particular properties satisfied by Sturmian words. Among the properties is the factor complexity.
Given a word w ∈ AN, we let Lw denote the set of factors of w, i.e.,

Lw = {wi · · ·wi+n−1 ∈ A∗ | i, n ∈ N}.

The factor complexity of w is the function

pw : N→ N, n 7→ #(Lw ∩An).

Words of complexity 2n + 1 were for instance considered by Arnoux and Rauzy [42] with the
condition that, like Sturmian words, there is exactly one left and one right special factor of each
length; these words are now called Arnoux-Rauzy words. It is known that the frequencies of any
Arnoux-Rauzy word are well defined and belong to the Rauzy gasket [43], a fractal set of Lebesgue
measure zero. Thus the above condition on the number of special factors is very restrictive for the
possible letter frequencies.

Words of complexity p(n) ≤ 2n + 1 include Arnoux-Rauzy words, codings of interval exchange
transformations and more [195]. For any given letter frequencies one can construct words of factor
complexity 2n+ 1 by the coding of a 3-interval exchange transformation. It is however known that
these words are almost always unbalanced [280].

In recent years, multidimensional continued fraction algorithms were used to obtain ternary
balanced words with low factor complexity for any given vector of letter frequencies. Indeed the
Brun algorithm leads to balanced words [119] and it was shown that the Arnoux-Rauzy-Poincaré
algorithm leads to words of factor complexity p(n) ≤ 5

2n+ 1 [4].
In 2017, the existence of a class of words over an alphabet of size d which simultaneously generalize

the three Sturmian properties was still open: having factor complexity (d− 1)n+ 1, achieving any
possible vector of rationally independent letter frequencies and being almost always balanced. With
Julien Cassaigne and Julien Leroy, we proved that the substitutions proposed by Cassaigne [102]
satisfy these three properties [5, 6]. We present these results in this chapter. The question remains
open for alphabets of size d ≥ 4.

10.1 Cassaigne Substitutions and S-adic words
Let A be an alphabet, i.e., a finite set. By substitution over A, we mean an endomorphism σ of the
free monoid A∗ which is non-erasing, i.e. σ(a) ̸= ε for all a, where ε is the empty word. If S is a set
of substitutions over A∗, a word w ∈ AN is said to be S-adic if there is a sequence σ = (σn)n∈N ∈ SN
and a sequence a = (an)n∈N ∈ AN such that the limit limn→+∞ σ0σ1 · · ·σn−1(an) exists and is equal
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10 Almost everywhere balanced sequences of complexity 2n+1

to w. The 2-tuple (σ,a) is called an S-adic representation of w and the sequence σ a directive
sequence of w. A directive sequence σ is primitive if for every n ∈ N, there exists m > n such that
for every letters a, b ∈ A, the letter a occurs in σinσin+1 · · ·σim(b). See [132, 80] for more details
about S-adic sequences.

A sequence of substitutions (σn)n∈N ∈ SN is said to be everywhere growing if mina∈A |σ[0,n)(a)|
goes to infinity as n goes to infinity. Also, recall that with an substitution σ : A∗ → A∗, we associate
its incidence matrix Mσ ∈ NA×A defined by (Mσ)a,b = |σ(b)|a. Thus, for any word w ∈ A∗, we have−−−→
σ(w) = Mσ

−→w , where −→w ∈ NA is defined by −→w a = |w|a.
The two substitutions over the alphabet A = {1, 2, 3} proposed by Cassaigne [102] are

c1 :





1 7→ 1
2 7→ 13
3 7→ 2

and c2 :





1 7→ 2
2 7→ 13
3 7→ 3

.

These substitutions lead to C-adic words from directive sequences over the set C = {c1, c2}. Note
that the choice of the above substitutions c1 and c2 is less trivial than one may first think. Indeed,
not all choices for the image of the letter 2 allow the complexity to remain 2n + 1. In particular,
changing c1 to be 1 7→ 1, 2 7→ 31, 3 7→ 2 may seem interesting since it makes both c1 and c2 left-
marked (the first letter of the images are all distinct), but this choice does not work as it increases
the factor complexity for the associated C-adic words.

With Cassaigne and Leroy, we proved that primitive C-adic words are equivalently characterized
by their factor complexity and the vector of their letter frequencies, generalizing the Sturmian case.

Theorem 10.1 ([6]). Let w be a C-adic word with directive sequence (in)n∈N, with in ∈ {1, 2} for
every n ∈ N. The following conditions are equivalent:

(i) w has factor complexity p(n) = 2n+ 1 for all n ∈ N;

(ii) the frequencies of letters in w are rationally independent;

(iii) (cin)n∈N is primitive;

(iv) w is a uniformly recurrent dendric word.

We also show that the primitive C-adic words are exactly the C-adic words that are dendric, a
property recently introduced under the name of “tree sets” [79].

Dendric words are such that the extension graph constructed from the bilateral extensions of the
bispecial factors is always a tree. Dendric words are also a natural extension of Sturmian sequences.
There have been a flourishing sequence of results about them in recent years [142, 143, 144, 123,
122, 121, 229, 73].

10.2 A bidimensional continued fraction algorithm
In this section, we show that Theorem 10.1 is constructive. Given a vector of rationally independent
letter frequencies, it is possible to construct a C-adic word with these letter frequencies. There is
an algorithm that constructs the directive sequence from the vector.

On the positive cone R3
≥0, the bidimensional continued fraction algorithm introduced by Cas-

saigne [102] is

FC(x1, x2, x3) =
{

(x1 − x3, x3, x2), if x1 ≥ x3;
(x2, x1, x3 − x1), if x1 < x3.

More information on multidimensional continued fraction algorithms can be found in [95, 250].
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10.2 A bidimensional continued fraction algorithm

Alternatively, the map FC can be defined by associating nonnegative matrices to each part of a
partition of R3

≥0 into Λ1 ∪ Λ2 where

Λ1 = {(x1, x2, x3) ∈ R3
≥0 | x1 ≥ x3},

Λ2 = {(x1, x2, x3) ∈ R3
≥0 | x1 < x3}.

The matrices are given by the rule M(x) = Ci if and only if x ∈ Λi where

C1 =




1 1 0
0 0 1
0 1 0


 and C2 =




0 1 0
1 0 0
0 1 1


.

The map FC on R3
≥0 and the projective map fC on ∆ = {x ∈ R3

≥0 | ∥x∥1 = 1} are then defined as:

FC(x) = M(x)−1x and fC(x) = FC(x)
∥FC(x)∥1

.

Thus, we have

fC(x1, x2, x3) =
{

(x1−x3
1−x3

, x3
1−x3

, x2
1−x3

), if x1 ≥ x3;
( x2

1−x1
, x1

1−x1
, x3−x1

1−x1
), if x1 < x3.

Many of their properties can be found in the Cheat Sheets made by the author about 3-dimensional
continued fraction algorithms [20]. These experiments made us realize that the map fC is conjugate
[5] with a semi-sorted version of another MCFA, the Selmer algorithm [251, 250]. Also note that
Selmer algorithm is conjugate on the absorbing simplex to Mönkemeyer’s algorithm [212] (see
[226]). Also we proved with Pierre Arnoux that fC has an invariant measure on the 2-simplex
whose density function is absolutely continuous with respect to Lebesgue [1].

Since {Λ1,Λ2} is a partition of R3
≥0, any vector x ∈ R3

≥0 defines a sequence of matrices (Cin)n∈N
by Cin = M(Fn

C(x)) and we have

x ∈
⋂

n≥0
Ci0Ci1 · · ·CinR3

≥0. (10.1)

The n-cylinders induced by fC on ∆ are illustrated in Figure 10.1.
76sage: from slabbe.matrix_cocycle import cocycles
77sage: c = cocycles.Cassaigne()
78sage: ctikz1 = c.tikz_n_cylinders(1, labels=True, scale=3)
79sage: ctikz2 = c.tikz_n_cylinders(2, labels=True, scale=3)
80sage: ctikz3 = c.tikz_n_cylinders(3, labels=True, scale=3)
81sage: ctikz4 = c.tikz_n_cylinders(4, labels=False, scale=3)
82sage: ctikz5 = c.tikz_n_cylinders(5, labels=False, scale=3)
83sage: ctikz6 = c.tikz_n_cylinders(6, labels=False, scale=3)

One may check that Ci is the incidence matrix of ci for i = 1, 2.
Like for matrices, any vector x ∈ R3

≥0 defines a directive sequence of substitutions (cin)n∈N,
where cin = c(Fn

C(x)) and c(y) = ci if and only if y ∈ Λi.
For example, using vector x = (1, e, π), we have

c(x)c(FCx)c(F 2
Cx)c(F 3

Cx)c(F 4
Cx) = c2c1c2c1c1 =





1 7→ 23
2 7→ 23213
3 7→ 2313
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Figure 10.1: The n-cylinders of fC on ∆ for each n ∈ {1, 2, 3, 4, 5, 6}. Any n-cylinder is represented by a word
u0u1 · · ·un−1 over {1, 2}∗ and is the set of points x ∈ ∆ such that for all k ∈ {0, 1, . . . , n− 1},
M(fk

C(x)) = Cuk
.

whose incidence matrix is

C2C1C2C1C1 =




0 1 1
1 2 1
1 2 2


 .

We may check that the vector x = (1, e, π) is in the interior of the cone spanned by the columns of
the matrix. This holds for every prefix of the directive sequence.

The construction of the directive sequence and C-adic word for a vector was implemented in the
slabbe optional package [24] of SageMath [246].

84sage: from slabbe.mult_cont_frac import Cassaigne
85sage: c = Cassaigne()
86sage: c
87Cassaigne 3-dimensional continued fraction algorithm
88sage: C = c.substitutions()
89sage: C
90{1: WordMorphism: 1->1, 2->13, 3->2, 2: WordMorphism: 1->2, 2->13, 3->3}
91sage: it = c.coding_iterator((1,e,pi))
92sage: directive_sequence = [next(it) for _ in range(20)]
93sage: directive_sequence
94[2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2]
95sage: w = c.s_adic_word((1,e,pi))
96sage: w
972323213232323132323213232321323231323232...

The C-adic word generated from the directive sequence has the good vector of letter frequency
because the algorithm is convergent. This is the subject of the next section.

10.3 Weak-convergence

In [6], we also show that for every sequence (in)n∈N ∈ {1, 2}N, the set ⋂n≥0Ci0Ci1 · · ·CinR3
≥0

is one-dimensional. This property, sometimes called weak convergence [59, 184], is not satisfied
by all choices of 3 × 3 matrices. For instance, Nogueira proved that the Poincaré MCFA is not
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convergent [220].

Theorem 10.2 ([6]). The Cassaigne bidimensional continued fraction algorithm is weakly con-
vergent. More precisely, for every sequence m = (Mn)n∈N ∈ {C1, C2}N, there exists a vector
u ∈ R3

≥0 \ {0} satisfying
⋂

n≥0
M0M1 · · ·Mn−1R3

≥0 = R≥0u. (10.2)

In our case, convergence allows to define a continuous map π : {1, 2}N → ∆ = {x ∈ R3
≥0 | ∥x∥1 =

1} by
π((in)n∈N)R≥0 =

⋂

n≥0
Ci0Ci1 · · ·CinR3

≥0. (10.3)

This map is not injective, as for example π(1222 . . . ) = (0, 1, 0) = π(2111 . . . ), but it is onto.
We also show that π is injective exactly on the set P of primitive sequences, i.e., sequences

(Cin)n∈N such that for all m and all large enough n > m, Cim · · ·Cin has only positive entries.
Furthermore, the image π(P) is the set I of normalized vectors with rationally independent entries.
The inverse of π : P → I is given by the multidimensional continued fraction algorithm introduced
by Cassaigne [102] that consists in iterating the map fC on x ∈ I.

The class of C-adic words with C = {c1, c2} provides a nice generalization of Sturmian words over a
three-letter alphabet. From Theorem 10.1 and Theorem 10.2, we have the following interpretations
of the previous discussion:

• by weak convergence, the frequencies of letters exist in every C-adic word;

• by surjectivity of π, every x ∈ ∆ is the vector of letter frequencies of a C-adic word;

• the bijection π : P → I induces a bijection between primitive C-adic words and vectors of
letter frequencies with rationally independent entries.

10.4 Measure-preserving isomorphisms

The map π also provides measure-preserving isomorphisms between the shift-space {1, 2}N and the
simplex ∆.

Theorem 10.3 ([6]). The following holds:

• for any shift-invariant Borel probability measure µ on {1, 2}N such that µ(P) = 1, the map
π : ({1, 2}N, S, µ)→ (∆, fC , π∗µ) is a measure-preserving isomorphism;

• for any fC-invariant Borel probability measure ν on ∆ such that ν(I) = 1, the map π :
({1, 2}N, S, π−1

∗ ν)→ (∆, fC , ν) is a measure-preserving isomorphism.

This result in particular applies to any positive Bernoulli measure β on {1, 2}N and to the fC-
invariant probability measure ξ defined by the density function 6/(π2(1−x1)(1−x3)) [1]. Observe
that any Bernoulli measure on {1, 2}N is ergodic and that the measure ξ is also ergodic [134].
Thus the pointwise ergodic theorem may be applied to obtain properties for Bernoulli-almost every
directive sequence (in)n∈N or for Lebesgue-almost every vector x. Theorem 10.4 below is an example
of such a result.
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10.5 Almost always balanced sequences
The last property of Sturmian words that we consider is their balancedness.

The word w is said to be finitely balanced if there exists a constant C > 0 such that for any pair
u, v of factors of the same length of w, and for any letter i ∈ A, ||u|i − |v|i| ≤ C.

Not all primitive C-adic words are balanced [36], but we prove that almost all of them are (for
many measures). Our proof is based on the method proposed by Avila and Delecroix [46] for Brun
and Fully Subtractive MCFA. It consists in applying the pointwise ergodic theorem to show that
some fixed contracting matrix appears sufficiently often in almost every sequence (Cin)n∈N. The
same method allows to show that the second Lyapunov exponent is negative. The definition of
Lyapunov exponents can be found in [6, Section 9]. For general references on Lyapunov exponents,
we refer to [222] and [140].

Theorem 10.4 ([6]). Let µ be a shift-invariant ergodic Borel probability measure on {1, 2}N. If

µ([12121212]) > 0,

then for µ-almost every directive sequence (in)n∈N ∈ {1, 2}N, the word w = limn→∞ ci0 . . . cin(1ω)
is balanced and the second Lyapunov exponent θµ

2 of the cocycle with matrices {C1, C2} is negative.

This result in particular applies to any positive Bernoulli measure and to the measure π−1
∗ (ξ).

Thus it extends a result of Berthé, Steiner and Thuswaldner [84] who proved that the second
Lyapunov exponent is negative for the measure π−1

∗ (ξ). Observe that π−1
∗ (ξ) is not a Bernoulli

measure so all these measures are pairwise mutually singular.
An application of multidimensional continued fraction algorithms is to provide simultaneous

Diophantine approximation of a vector of real numbers [248]. The quality of the approximations
can be evaluated in terms of the first two Lyapunov exponents of the MCFA [59, 185]. In particular,
if the second Lyapunov exponent is negative, this implies that the algorithm is strongly convergent
[150, 151, 152].

10.6 3-to-1 cut and project schemes: Example and applications
Consider the periodic sequence 121212 · · · . We have that

π(121212 · · · ) = 1
β2 + 1




β
β2 − β

1


 ≈




0.4302
0.3247
0.2451




is a positive right eigenvector of the primitive matrix C1C2 associated with the Perron-Frobenius
eigenvalue β ≈ 1.7548 of C1C2. It is the positive root of the characteristic polynomial x3−2x2+x−1
of C1C2. The infinite word on the alphabet {1, 2, 3} obtained by applying our MCFA to the above
vector is the C-adic word which is the unique fixed point of the substitution c1c2 : 1 7→ 13, 2 7→
12, 3 7→ 2:

w = (wn)n≥0 = lim
k→∞

(c1c2)k(1) = 1321213121321312132121321312132121312132 · · ·

whose set of factors of lengths 0, 1, 2, 3 and 4 are listed in the following table:

n 2n+ 1 factors of length n

0 {ε}
1 {1, 2, 3}
2 {12, 13, 21, 31, 32}
3 {121, 131, 132, 212, 213, 312, 321}
4 {1213, 1312, 1321, 2121, 2131, 2132, 3121, 3212, 3213}
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The left eigenvector of C1C2 associated with the dominant eigenvalue β is u = (1, β2 − β, β − 1).
We define the map h : {1, 2, 3} → C by h(1) = 1, h(2) = β∗2 − β∗ and h(3) = β∗ − 1 where
β∗ ≈ 0.12256 + 0.74486i is one of the two complex Galois conjugates of β. Observe that the vector
u∗ = (h(1), h(2), h(3)) is the image of u under the automorphism of the field Q(β) defined by
β 7→ β∗. The scalar product of u∗ with π(121212 · · · ) is zero. Thus, as w is balanced, the partial
sums Sh(N) = ∑N−1

i=0 h(wi) are bounded. The set {Sh(N) : N ∈ N}, shown in Figure 10.2, is a
well-known construction of the Rauzy fractal associated with a substitution [237, 124, 257, 82].
Theorem 10.4 implies that the Rauzy fractal is bounded for almost every C-adic word. As shown
recently, this is not true for all C-adic words [36].

Figure 10.2 can be reproduced in SageMath in few lines:
98sage: c1 = WordMorphism("1->1,2->13,3->2")
99sage: c2 = WordMorphism("1->2,2->13,3->3")
100sage: c12 = c1*c2
101sage: c12_left_image = c12.rauzy_fractal_plot(n=1000, point_size=80)
102sage: c12_right_image = c12.rauzy_fractal_plot(n=1000, point_size=80, exchange=True)
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Figure 10.2: The Rauzy fractal associated with the fixed point w of c1c2. On the left (right resp.) the color
of the point Sh(N) ∈ C is chosen according to the letter wN (wN−1 resp.).

In Figure 10.2, we observe that the fractal can be decomposed into three parts in two distinct
ways, which defines an exchange of pieces inside the fractal.

10.7 Impact

After the publication of [5, 6], I put my work on multidimensional continued fraction algorithms
aside and I started to focus on the newly discovered Jeandel-Rao aperiodic tilings and more generally
on 4-to-2 cut and project schemes. Meanwhile, the progresses in this subject did not stop [53, 37,
115, 107, 134, 77, 84, 78, 179].

Recent progresses [133, 85] proved that the exchange of pieces shown in Figure 10.2 is almost
surely equivalent to a rotation on a two-dimensional torus, and more importantly that almost every
rotation on the 2-dimensional torus admits a coding of complexity 2n + 1 through such a fractal
partition of the 2-torus.

A key point in the proof of balancedness for C-adic sequences is using the semi-norm ∥·∥D : Rd →
R defined as ∥v∥D = max(v)−min(v) which turned out to be quite effective for this purpose. The
same norm and the same approach was recently used to prove that a class of interval translation
mappings introduced by Bruin and Troubetzkoy has almost always the Pisot property [44].
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10 Almost everywhere balanced sequences of complexity 2n+1

10.8 Open questions
C-adic sequences are a very nice generalization of Sturmian sequence to ternary sequences: factor
complexity bounded above by 2n+1, generated by product of simple 2 substitutions, almost always
balanced and the subshift they generate is almost surely equivalent to a translation on a 2-torus.
Nevertheless, we don’t know if such a nice low complexity extension can be made over larger
alphabet of size ≥ 4.

Question 10.5. Let d ≥ 3, does there exists a family of words of complexity bounded above by
(d − 1)n + 1, which are almost always balanced and which can achieve all linearly independent
vectors of letter frequencies?

Recent results by Berthé, Steiner and Thuswaldner seem to indicate that §-adic sequences gener-
ated by typical multidimensional continued fraction algorithms will not be balanced if the dimension
gets larger than 10 [84].
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Chapter 11

Jeandel-Rao tilings

“Do cool things”

— A slogan posted on a billboard in the atrium of LaBRI, Spring 2017.

In this chapter, we summarize our main results about Jeandel-Rao tilings split into 5 papers [7,
10, 8, 9, 13] It is the longest chapter of this thesis, because their study turned out to be very rich.
However, the objective of this chapter is to remain at a high level. The reader who wants more
details on the combinatorial and geometrical algorithms that are developed in this study is suggested
to read the articles directly or read the chapter [21]. This other chapter offers a transversal reading
of the work made on Jeandel-Rao tilings. It presents the desubstitution of Wang shifts on one-side
and the Rauzy induction of Z2-action and polygonal partitions on the other side while focusing on
the simpler self-similar Wang shift hidden in the Jeandel-Rao tilings.

Our work on Jeandel-Rao tilings allowed to make new connections between notions that are a
priori disjoint:

• Sturmian sequences obtained as symbolic codings of zero entropy irrational rotations (having
no periodic points),

• subshifts of finite type obtained as the symbolic codings of positive entropy hyperbolic auto-
morphisms of the torus Markov partitions (having lots of periodic points).

Behaviors in one dimension, are quite different in two dimensions and higher. In particular, we
know from Berger [67] that there exists two-dimensional aperiodic shift of finite type. Therefore
what is generally accepted as incompatible for one-dimensional dynamical systems might become
possible in dimension 2. This is exemplified by the existence of a Markov Partition for a Z2-action
acting by rotation (or should we say translation) on a 2-dimensional torus.

11.1 How it all started: computer explorations
After the talk made by Emmanuel Jeandel at the France annual GDR-IM meeting in January 2016,
at LIPN, Paris1, I was quite curious about the fact that Fibonacci numbers were appearing in the
description of the new aperiodic tilings allowed with the new smallest aperiodic set of 11 Wang
tiles discovered by Emmanuel Jeandel and Michael Rao [163]. At that time, I was too busy with
my current postdoctoral projects and job applications. Also, it was too risky to start investigating
questions on aperiodic tilings at that time, since I did not work on aperiodic tilings, Wang tilings
or multidimensional subshifts before.

One year later, the situation was different (I started my position at CNRS on January 1st, 2017).
The presentation of Michael Rao on April 6th 2017 at the Centre de recherche mathématiques
(CRM) in Montréal about the new aperiodic set of 11 Wang tiles finished with a slide saying

1https://lipn.univ-paris13.fr/GDR-IM-2016/talks.php
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11 Jeandel-Rao tilings

Open question 2 : proof from the book ?
If we look at densities of 1 on each line on an infinite tiling, one transducer add φ− 1
and the other add φ− 2,
→ additive-Kari-type ?

Since

φ− 1 ≡ φ− 2 ≡ φ (mod 1),

what Michael was saying is that there was a uniform vertical rotation (mod 1) involving the golden
ratio.

Two days before, on April 4th, 2017, Jarkko Kari made a talk at the same conference entitled
Piecewise affine functions, Sturmian sequences and aperiodic tilings where he presented general-
izations of the Kari-Culik aperiodic sets of Wang tiles [171]. The proof of existence of aperiodic
tilings with these tiles was involving horizontal Sturmian-like rotations. A natural question came
up at that point.

Question 11.1. What if Jeandel-Rao tilings are coded by vertical and horizontal rotations?

Knowing that we can easily check if a sequence is obtained by a coding of a rotation (for instance
using the Python/SageMath function draw_sequence_on_circle(sequence, frequency) defined
in Section 3.10), I asked Michael to provide me with one big enough tiling with Jeandel-Rao tiles.

He provided me with a 986-line file called patch each line made of 2583 characters in the set
{a, b}. Already, we could confirm that Fibonacci numbers were involved both horizontal and
vertically since 987 and 2584 are Fibonacci numbers. The binary alphabet {a, b} is related to the
decomposition of Jeandel-Rao tilings into horizontal strips of height 4 or 5 as explained in their
article. The bottom and top labels of these strips are biinfinite binary sequences. This is what the
file Michael gave me was describing.

Here, we may reproduce this day-1 computer experiment using a file present on the Emmanuel
Jeandel website describing a 100× 100 valid rectangular tiling with Jeandel-Rao tiles2. Of course,
the first frequency that we try is the golden ratio. Here is what we get.

103sage: import urllib
104sage: url = "https://members.loria.fr/EJeandel/research/100.txt"
105sage: content = urllib.request.urlopen(url).read()
106sage: Jeandel100 = [line.decode() for line in content.splitlines()]
107sage: Jeandel100[35][:80]
10873a43a3873a2873a43a3873a2873873a2873a43a3873a2873a43a2873a2873873a2873a43a3873a2
109sage: keys = "0123456789a"
110sage: GJR35 = draw_sequence_on_circle(Jeandel100[35], frequency=(1+sqrt(5))/2, keys=keys)
111sage: GJR36 = draw_sequence_on_circle(Jeandel100[36], frequency=(1+sqrt(5))/2, keys=keys)
112sage: GJR58 = draw_sequence_on_circle(Jeandel100[58], frequency=(1+sqrt(5))/2, keys=keys)
113sage: GJR = graphics_array([GJR35, GJR36, GJR58])

2https://members.loria.fr/EJeandel/research/wang.html
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On the left, in the middle and on the right, we see intervals appearing for the 35-th, 36-th and
58-th row of the 100 × 100 patch present on Emmanuel website. Each other row also produces
intervals when drawn using the golden ratio frequency. The answer to Question 11.1 was therefore
positive.

What was more problematic was that no two rows was producing the same intervals. Sometimes,
they looked similar (compare the image for the 35th-row and 58th-row), but never the intervals
were of the same lengths. The fact that vertical rotations were involved as deduced from the
observation of Michael Rao suggested to search for coding of horizontal and vertical rotations on a
2-dimensional torus. It is then natural to extend the function draw_sequence_on_circle defined
in Section 3.10 to the 2-dimensional setup. This is what we do in the following Python/SageMath
functions.

114sage: from collections import defaultdict
115sage: def preimage2d(rectangular_pattern):
116....: "Input␣is␣using␣matrix␣coordinates,␣output␣using␣Euclidean␣coordinates"
117....: d = defaultdict(list)
118....: nlines = len(rectangular_pattern)
119....: for (j, line) in enumerate(rectangular_pattern):
120....: for (i, a) in enumerate(line):
121....: d[a].append((i,nlines - 1 - j))
122....: return dict(d)
123sage: from sage.functions.other import floor
124sage: def frac(x):
125....: return x - floor(x)
126sage: def draw_pattern_on_torus(pattern, M):
127....: d = preimage2d(pattern)
128....: c_dict = dict(zip(d.keys(), rainbow(len(d))))
129....: markers = "+x><^vDH_|os*,dh12345678"
130....: m_dict = dict(zip(d.keys(), markers))
131....: G = Graphics()
132....: for a in d:
133....: L = [M*vector((i,j)) for (i,j) in d[a]]
134....: fracL = [(frac(x),frac(y)) for (x,y) in L]
135....: G += points(fracL, color=c_dict[a], legend_label=a, marker=m_dict[a])
136....: return G

For example, here are some usage of the above functions:
137sage: preimage2d([[1,2,3],[5,5,5]])
138{1: [(0, 1)], 2: [(1, 1)], 3: [(2, 1)], 5: [(0, 0), (1, 0), (2, 0)]}
139sage: frac(pi)
140pi - 3

In SageMath, we define the golden ratio as a number field element, because computations are
exact and faster this way:
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11 Jeandel-Rao tilings

141sage: z = polygen(QQ, "z")
142sage: K.<phi> = NumberField(z^2-z-1, embedding=RR(1.6))
143sage: phi.n(digits=80)
1441.6180339887498948482045868343656381177203091798057628621354486227052604628189024

It took some months to figure out the structure of Jeandel-Rao tilings. But it can be explained
in four easy experimentations using the above SageMath functions. In each of the four steps, we
draw the Jeandel 100× 100 patch by associating a colored point to each tile.

Firstly, we start by using the matrix ( 100 0
0 100 )−1. Using the frequency 1

100 horizontally and
vertically is a trick to make the points represent the tiling itself: the points at the top correspond
to tiles at the top of the patch, the points on the right correspond to tiles on the right of the patch,
etc.

145sage: M1 = matrix.column([(100,0), (0,100)])
146sage: G1 = draw_pattern_on_torus(Jeandel100, M1.inverse())
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Secondly, we use the matrix
(

φ 0
0 100

)−1
. This makes each row in the patch to wrap around a

circle (shown horizontally on the image below) with golden mean frequency. The intervals we have
seen earlier on a circle now appear horizontally on each row. Using the frequency 1

100 vertically is
a trick to make the points of the j-th row correspond to tiles on the j-th row of the patch.

147sage: M2 = matrix.column([(phi,0), (0,100)])
148sage: G2 = draw_pattern_on_torus(Jeandel100, M2.inverse())
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Thirdly, we use the matrix
(

φ 0
0 φ+3

)−1
. This makes sense because the vertical distance (or return

time) between rows involving tiles labeled #0 and #1 is 4 or 5 with an average of φ+ 3 as noticed
already by Jeandel and Rao [163]. We observe that this gathers the rows looking similar close
apart.

149sage: M3 = matrix.column([(phi,0), (0,phi+3)])
150sage: G3 = draw_pattern_on_torus(Jeandel100, M3.inverse())
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Finally, we use the matrix
(

φ 1
0 φ+3

)−1
. Replacing a zero by a one above the diagonal was the

hardest step to figure out. Indeed, there is a sheer happening in Jeandel-Rao tilings. This is one
of the reason that makes the description of Jeandel-Rao tilings more difficult, but certainly very
interesting!
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151sage: M4 = matrix.column([(phi,0), (1,phi+3)])
152sage: G4 = draw_pattern_on_torus(Jeandel100, M4.inverse())
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Here something magical happens in the previous output. We understand that the intervals are
no longer intervals: they are portions of polygons forming a partition of the torus. We can guess the
coordinates of the vertices of the polygons with respect to some origin. These coordinates are simple
to express after applying the transformation x 7→

(
φ 1
0 φ+3

)
x. This transformation renormalizes the

polygonal partition of the unit square to a polygonal partition of a fundamental domain of the
lattice

(
φ 1
0 φ+3

)
Z2.

11.2 Constructing valid Jeandel-Rao tilings using a polygonal par-
tition

Let Γ0 =
(

φ 1
0 φ+3

)
Z2 be a lattice in R2 involving the golden ratio φ = 1+

√
5

2 . On the 2-dimensional
torus R2/Γ0, we may define the following Z2-action R0:

R0 : Z2 × R2/Γ0 → R2/Γ0
(k,x) 7→ x + k.

The Z2-action R0 defines a dynamical system Z2 R0↷ R2/Γ0.
In [8], we proved that a minimal subshift within the Jeandel–Rao Wang shift is symbolic extension

of the dynamical system Z2 R0↷ R2/Γ0. The symbolic coding is obtained through a polygonal
partition P0 of a rectangular fundamental domain [0, φ)× [0, φ+ 3) of R2/Γ0. The partition P0 is
shown in Figure 11.1. It is indexed by integers from the set {0, 1, 2, . . . , 10}.

The symbolic dynamical system XP0,R0 corresponding to P0, R0 is the topological closure of the
set of all configurations w ∈ {0, 1, . . . , 10}Z2 obtained from the coding by the partition P0 of the
orbit of some starting point in R2/Γ0 by the Z2-action of R0. We say that XP0,R0 is a subshift as
it is also closed under the shift σ by integer translations. The fact that XP0,R0 ⊂ Ω0 is illustrated
in Figure 11.2 where Ω0 ⊂ {0, 1, . . . , 10}Z2 is the Jeandel-Rao Wang shift.
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Figure 11.1: The partition for the Jeandel-Rao Wang tiles is the refinement of four polygonal partitions (one
partition for each side of the Wang tiles). From left to right, the partition Y for the right color,
Z for the top color, Re1

0 (Y) for the left color and Re2
0 (Z) for the bottom color. Their refinement

is the partition P0 where each part is associated with one of Jeandel-Rao Wang tiles. Note that
the typo in the coordinates of the y-axis in the published version [8] (shame on me) is fixed in
this figure.

Theorem 11.2 ([8]). The Jeandel-Rao Wang shift Ω0 has the following properties:

(i) XP0,R0 ⊂ Ω0 is a minimal and aperiodic subshift of Ω0,

(ii) the partition P0 gives a symbolic representation of Z2 R0↷ R2/Γ0,

(iii) Z2 R0↷ R2/Γ0 is the maximal equicontinuous factor of Z2 σ↷ XP0,R0,

(iv) the set of fiber cardinalities of the factor map XP0,R0 → R2/Γ0 is {1, 2, 8},

(v) the dynamical system Z2 σ↷ XP0,R0 is uniquely ergodic,

(vi) the measure-preserving dynamical system (XP0,R0 ,Z2, σ, ν) is isomorphic to (R2/Γ0,Z2, R0, λ)
where ν is the unique shift-invariant probability measure on XP0,R0 and λ is the Haar measure
on R2/Γ0.

A do-it-yourself puzzle illustrating Theorem 11.2 is available at

http://www.slabbe.org/blogue/2024/04/
a-do-it-yourself-polygonal-partition-to-construct-jeandel-rao-tilings/.

It allows hand made construction of configurations in XP0,R0 ⊂ Ω0 as the symbolic representation
of starting points in R2/Γ0; see Figure 11.3.

Note that a similar result was obtained for Penrose tilings [241, Theorem A]. In particular, it
was shown that the set of fiber cardinalities for Penrose tilings (with the action of R2) is {1, 2, 10}.
In [192], it was proved that the set of fiber cardinalities is {1, 2, 6, 12} for a minimal hull among
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Figure 11.2: On the left, we illustrate the lattice Γ0 = ⟨(φ, 0), (1, φ + 3)⟩Z, where φ = 1+
√

5
2 , with black

vertices, a rectangular fundamental domain of the flat torus R2/Γ0 with a black contour and a
polygonal partition P0 of R2/Γ0 with indices in the set {0, 1, . . . , 10}. We show that for every
starting point p ∈ R2, the coding of the shifted lattice p + Z2 under the polygonal partition
yields a configuration w : Z2 → {0, 1, . . . , 10} which is a symbolic representation of p. The
configuration w corresponds to a valid tiling of the plane with Jeandel-Rao’s set of 11 Wang
tiles.

Taylor-Socolar hexagonal tilings. We show in [8] that the set of fiber cardinalities of the maximal
equicontinuous factor of a minimal dynamical system is invariant under topological conjugacy.
Therefore, the Jeandel-Rao tilings, the Penrose tilings and the Taylor-Socolar tilings are inherently
different.

11.3 A degenerate cut and project scheme for Jeandel-Rao tiings
A consequence of Theorem 11.2 is a description of the aperiodic Wang shift Ω0 with cut and project
schemes. Lifting a tiling by Wang tiles is more difficult because all edges of the Wang tiles are
either horizontal or vertical unit vectors in the plane. The solution is to use a degenerate cut and
project scheme where the projection of the lattice in the physical space is not injective.

We want to describe the positions Q ⊆ Z2 of patterns in configurations belonging to XP0,R0 ⊊ Ω0.
It is not possible to construct a classical cut and project scheme satisfying that π|L is an injective
map. But it is possible to construct a degenerate 4-to-2 cut and project scheme as in Section 7.2.

Let Γ0 = ⟨(φ, 0), (1, φ + 3)⟩Z be a cocompact lattice in R2 where φ = 1+
√

5
2 . We define the

projections π and πint on R4 as:
π : R4 → R2

(x1, x2, x3, x4) 7→ (x1 + x2, x3 + x4)
and

πint : R4 → R2/Γ0

(x1, x2, x3, x4) 7→
(
x1 − 1

φx2 + 1
φx4, x3 − (φ+ 2)x4

)
.

The physical space is K = R2. The internal space is H = R2/Γ0. We consider the lattice L = Z4.
The projection π|L : L → R2 is not injective. But we have

Ker(π) ∩ L = ⟨(1,−1, 0, 0), (0, 0, 1,−1)⟩Z.
The image of these vectors under πint are

πint ((1,−1, 0, 0)) = (1 + 1
φ , 0) = (φ, 0) = 0 (mod Γ0),

πint ((0, 0, 1,−1)) = (− 1
φ , φ+ 3) = 0 (mod Γ0).
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11.3 A degenerate cut and project scheme for Jeandel-Rao tiings

Figure 11.3: The Jeandel-Rao tiling solver tutorial.

Therefore, condition (7.1) is satisfied and we conclude that the 5-uple (H,K,L, π, πint) is a degen-
erate 4-to-2 cut and project scheme.

The star map defined from this degenerate cut and project scheme is the natural projection
Z2 → R2/Γ0:

⋆ : x 7→ x (mod Γ0).

The fact that the ⋆ map is the identity modulo the lattice Γ0 is what allows to identify the physical
space with the internal space in Figure 11.2 and Figure 11.3 as done in Example 7.5 for a degenerate
2-to-1 cut and project scheme.

Recall that we proved in Theorem 11.2 that XP0,R0 ⊊ Ω0 and that there exists a factor map f0
from (XP0,R0 ,Z2, σ) to (R2/Γ0,Z2, R0). Therefore any Jeandel-Rao configuration w ∈ XP0,R0 ⊊ Ω0
can be qualified as a singular or generic according to whether f0(w) is in the boundary of the
partition ∆P0,R0 ⊂ R2/Γ0 or not.

We show that the occurrences of patterns in the Wang shifts are regular model sets. Definitions
of regular, generic and singular models sets can be found in Section 7.1.

Theorem 11.3 ([8]). For every Jeandel-Rao configuration w ∈ XP0,R0 ⊊ Ω0, the set Q ⊆ Z2 of oc-
currences of a pattern in w is a regular model set within the degenerate 4-to-2 cut and project scheme
defined above. If w is a generic (resp. singular) configuration, then Q is a generic (resp. singular)
model set.

It was shown that the action of R2 by translation on the set of Penrose tilings is an almost one-
to-one extension of a minimal R2-action by rotations on T4 [241] (the fact that it is T4 instead of T2

is related to the consideration of tilings instead of shifts). This result can also be seen as a higher
dimensional generalization of the Sturmian dynamical systems. Note that a shift of finite type or
Wang shift can be explicitly constructed from the Penrose tiling dynamical system, as shown in
[245]. This calls for a common point of view including Jeandel-Rao aperiodic tilings, Penrose tilings
and others. For example, we do not know if Penrose tilings can be seen as a symbolic dynamical
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11 Jeandel-Rao tilings

system associated to a Markov partition like it is the case for the Jeandel-Rao Wang shift. It is
possible that such Markov partitions exist only for tilings associated to some algebraic numbers,
see [57].

11.4 Does the coding by the partition generate all Jeandel–Rao
configurations?

After Theorem 11.2, a natural question is whether XP0,R0 ⊃ Ω0? In other words, is every configu-
ration in the Jeandel-Rao Wang shift obtained as the coding of the shifted lattice p + Z2 for some
point p ∈ R2/Γ0?

Proving XP0,R0 ⊂ Ω0 in Theorem 11.2 corresponds to the easy direction in the proof of Morse-
Hedlund’s theorem, namely that codings of irrational rotations have pattern complexity n + 1.
[216, 113]. Proving the converse, i.e., that almost every sequence of complexity n + 1 is harder.
It is based, one the one hand, on the desubstitution of sequences of complexity n + 1, and on the
other hand, on the Rauzy induction of irrational rotations on the circle. As it is well-known, this
is related to the continued fraction expansion of the angle of rotation. Recent treatment of this
relation can be found in [38, 268]

To find the starting point in the torus R2/Γ0 associated to some Jeandel–Rao configuration,
we need to generalize the proof of Morse-Hedlund theorem to the 2-dimensional setup of Wang
subshifts. This has lead to split the proof of the converse into two parts (three articles). First, we
computed the substitutive structure of Ω0 [7, 10]. Then, we computed the substitutive structure
of XP0,R0 from the Rauzy induction of the Z2-action R0 and polygonal partition P0 [9]. Both
substitutive structures (given as an eventually periodic sequence of 2-dimensional substitutions)
computed from totally different objects and algorithms are the same!

These results are summarized in the next sections. Note that the three articles [7], [10] and [9]
totaling 130 pages. In this thesis, the goal is not to explain the details of the techniques again, but
rather to give an overview of the main results and how they interact with each others. For more
details about the techniques, the curious reader may want to take a look at the chapter written
for a book to appear in the series of the Chair Jean Morlet (Jayadev Athreya, Fall 2023) [21]. In
that chapter, we offer, in a single document, a transversal reading of our work done on Jeandel-
Rao tilings by focusing on the self-similar Wang shift hidden in Jeandel-Rao tilings. The chapter
contains also a lot of exercises and SageMath code allowing to reproduce the experiments: very
good for students or anyone wanting to learn these techniques.

11.5 Desubstitution of Wang tilings

The description of the substitutive structure of Jeandel-Rao tilings was split into two articles. In
one article, we focused on an aperiodic and self-similar set of 19 Wang tiles U [7]. In the other
article [10], we show that there exists an aperiodic and minimal subshift X0 of the Jeandel-Rao
tilings Ω0 such that every configuration in X0 can be decomposed uniquely into 19 distinct patches
(two of size 45, four of size 70, six of size 72 and seven of size 112) that are equivalent to the set of
19 Wang tiles U .

Formally, configurations in X0 ⊂ Ω0 can be constructed from an eventually periodic sequence
of 2-dimensional substitutions. The substitutions are computed automatically using the same
algorithms at each step: FindMarkers and FindSubstitution. These algorithms were implemented
in the slabbe package [24] of SageMath [246] and their pseudo-code is available in [10]. There are
a dozens of such elementary steps between Jeandel-Rao tilings X0 ⊂ Ω0 and ΩU that are illustrated
in Figure 11.4.
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Ω0 Ω1 Ω2 Ω3 Ω4

X0 X1 X2 X3 X4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10 Ω11 Ω12 ΩU

⊂

⊃ ⊃ ⊃ ⊃

ω0 ω1 ω2 ω3

ω0 ω1 ω2 ω3

ȷ η ω6 ω7 ω8 ω9 ω10 ω11 ρ

ωU

Figure 11.4: Substitutive structure of Jeandel-Rao aperiodic Wang shift Ω0 and its minimal subshift X0
leading to the self-similar aperiodic and minimal Wang shift ΩU introduced in [7].

The substitutive structure of the Jeandel-Rao Wang shift is given more precisely by the following
result in which we use the following notation

X
σ =

⋃

k∈Z2

σkX =
⋃

k∈Z2

{σk(x) | x ∈ X}

for the closure of a set X ⊂ AZ2 under the shift σ.

Theorem 11.4 ([10]). Let Ω0 be the Jeandel-Rao Wang shift. There exist sets of Wang tiles
{Ti}1≤i≤12 together with their associated Wang shifts {Ωi}1≤i≤12 that provide the substitutive struc-
ture of Jeandel-Rao tilings. More precisely,

(i) There exists a sequence of recognizable 2-dimensional morphisms:

Ω0
ω0←− Ω1

ω1←− Ω2
ω2←− Ω3

ω3←− Ω4

that are onto up to a shift, i.e., ωi(Ωi+1)σ = Ωi for each i ∈ {0, 1, 2, 3}.

(ii) There exists an embedding ȷ : Ω5 → Ω4 which is a topological conjugacy onto its image.

(iii) There exists a shear conjugacy η : Ω6 → Ω5 which shears Wang tilings by the action of the
matrix ( 1 1

0 1 ).

(iv) There exists a sequence of recognizable 2-dimensional morphisms:

Ω6
ω6←− Ω7

ω7←− Ω8
ω8←− Ω9

ω9←− Ω10
ω10←−− Ω11

ω11←−− Ω12

that are onto up to a shift, i.e., ωi(Ωi+1)σ = Ωi for each i ∈ {6, 7, 8, 9, 10, 11}.

(v) The Wang shift Ω12 is equivalent to ΩU , thus is self-similar, aperiodic and minimal.

The intermediate subshifts are given by a sequence of sets of Wang tiles {Ti}1≤i≤12 together with
their associated Wang shifts {Ωi}1≤i≤12. The cardinality of the involved sets of tiles is in the table
below.

Set of tiles T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 U
Cardinality 11 13 20 24 28 29 29 20 20 22 18 21 19 19

Figures illustrating the substitutions between these Wang shifts are in the appendix of [10].
The theorem has the following consequences.

Corollary 11.5 ([10]). Ωi is aperiodic and minimal for every i with 5 ≤ i ≤ 12.

Let X4 = ȷ(Ω5) be the image of the embedding ȷ, as well as X3 = ω3(X4)σ, X2 = ω2(X3)σ,
X1 = ω1(X2)σ and X0 = ω0(X1)σ.
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11 Jeandel-Rao tilings

Corollary 11.6 ([10]). Xi ⊆ Ωi is an aperiodic and minimal subshift of Ωi for every i with
0 ≤ i ≤ 4.

The fact that each tiling in X0 can be decomposed uniquely into this procedure follows from the
fact that each morphism ωi with 0 ≤ i ≤ 3 or 6 ≤ i ≤ 11 is recognizable and onto up to a shift,
and both ȷ : Ω5 → X4 and η : Ω6 → Ω5 are one-to-one and onto. The term recognizable morphism
essentially means that the morphism is one-to-one up to a shift.

The construction of the morphisms ωi is inspired from a well-known method to study self-similar
aperiodic tilings. One way to prove that a Wang shift is aperiodic is to use the unique composition
property [263] also known as composition-decomposition method [51]. That method was used in
[7] to show that ΩU is self-similar, minimal and aperiodic based on the notion of marker tiles and
recognizability.

The same method can be used in the context of Wang shifts that are not self-similar. The idea is
to prove that a Wang shift is similar to another one which is known to be aperiodic. This reminds of
[86] where the authors study the recognizability for sequences of morphisms in the theory of S-adic
systems on Z [80]. Note that applying a sequence of recognizable substitutions in the context of
hierarchical tilings of Rd was also considered in [136, 135].

Due to the fact that we have many steps to perform to understand Jeandel-Rao tilings, we
improve the method used in [7] which, based on the existence of marker tiles M ⊂ T among a set
of Wang tiles T , proved the existence of a set of Wang tiles S and a recognizable 2-dimensional
morphism ΩS → ΩT that is onto up to a shift.

We provided two algorithms in [10]. Algorithm FindMarkers finds a set of marker tiles M ⊂ T
(if it exists) from a set of Wang tiles T and a given surrounding radius to consider (the surrounding
radius input is necessary since otherwise it is undecidable). Algorithm FindSubstitution computes
the set of Wang tiles S and the recognizable 2-dimensional morphism ΩS → ΩT from a set of
markers M ⊂ T . The morphism is of the form □ 7→ □,□ 7→ or of the form □ 7→ □,□ 7→
mapping each tile from S on a tile in T or on a domino of two tiles in T .

11.6 Rauzy induction of toral Z2-actions

In this section, we forget about the Jeandel-Rao Wang tiles. We consider the Z2-action

R0 : Z2 × R2/Γ0 → R2/Γ0
(n,x) 7→ x + n

on the torus R2/Γ0 where
Γ0 = ⟨(φ, 0), (1, φ+ 3)⟩Z

is a lattice in R2 with φ = 1+
√

5
2 . We consider the symbolic dynamical system XP0,R0 defined by

coding orbits of R0 by the polygonal partition P0 of the torus R2/Γ0; see Figure 11.5.
Our goal is to describe the substitutive structure of the symbolic dynamical system XP0,R0 . The

method is inspired from the proof of Morse-Hedlund’s theorem and its link with continued fraction
expansion and induced transformations. To achieve this, we extended in [9] the notion of Rauzy
induction of IETs to the case of Z2-actions and we introduced the notion of induced partitions.
Each induction step allows to express the original symbolic dynamical system as the image under
a 2-dimensional substitution of an induced subsystem.

The substitutions are computed automatically using the same algorithms at each step: InducedPartition
and InducedTransformation. These algorithms were implemented in the slabbe package [24] of
SageMath [246] and their pseudo-code is available in [9].

The substitutive structure of XP0,R0 is described in the next result.
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Figure 11.5: For every starting point p ∈ R2, the coding of the shifted lattice p + Z2 under the polygon
partition P0 yields a configuration which is a symbolic representation of p.

Theorem 11.7 ([9]). Let XP0,R0 be the symbolic dynamical system associated to P0, R0. There
exist lattices Γi ⊂ R2, alphabets Ai, Z2-actions Ri : Z2 ×R2/Γi → R2/Γi and topological partitions
Pi of R2/Γi indexed by letters from the alphabet Ai that provide the substitutive structure of XP0,R0.
More precisely,

(i) There exists a 2-dimensional morphism β0 : A1 → A∗2
0

XP0,R0
β0←− XP1,R1

that is onto up to a shift, i.e., XP0,R0 = β0(XP1,R1)σ.

(ii) There exists a shear conjugacy
XP1,R1

β1←− XP2,R2

shearing configurations by the action of the matrix M = ( 1 1
0 1 ), i.e., satisfying σMk◦β1 = β1◦σk

for every k ∈ Z2.

(iii) There exist 2-dimensional morphisms β2, β3, β4, β5, β6 and β7:

XP2,R2
β2←− XP3,R3

β3←− XP4,R4
β4←− XP5,R5

β5←− XP6,R6
β6←− XP7,R7

β7←− XP8,R8

that are onto up to a shift, i.e., XPi,Ri = βi(XPi+1,Ri+1)σ for each i ∈ {2, 3, 4, 5, 6, 7}.

(iv) The subshift XP8,R8 is self-similar satisfying XP8,R8 = β8β9τ(XP8,R8)σ. More precisely, there
exist two 2-dimensional morphisms β8, β9 and a bijection τ : A8 → A10

XP8,R8
β8←− XP9,R9

β9←− XP10,R10
τ←− XP8,R8

that are onto up to a shift, i.e., XP8,R8 = β8(XP9,R9)σ, XP9,R9 = β9(XP10,R10)σ and XP10,R10 =
τ(XP8,R8) and the product β8β9τ is an expansive and primitive self-similarity.

(v) The subshift XP8,R8 is topologically conjugate to the subshift XPU ,RU introduced in [8] as there
exists a bijection ζ : U → A8 such that ζ(XPU ,RU ) = XP8,R8.

89



11 Jeandel-Rao tilings

Ω0 Ω1 Ω2 Ω3 Ω4

X0 X1 X2 X3 X4 Ω5 Ω6 Ω7 Ω12 ΩU

XP0,R0 XP1,R1 XP2,R2 XP3,R3 XP8,R8 XPU ,RU

⊂
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=

= = = =

β0 β1 β2

ω0 ω1 ω2 ω3

ω0 ω1 ω2 ω3

ȷ η ω6 ω7ω8ω9ω10ω11

β3β4β5β6β7 ζ

ζ−1β8β9τζβ8β9τ

ρ

ρωUρ
−1 ωU

Figure 11.6: The subshifts X0 ⊂ Ω0 and XP0,R0 are equal since they have a common substitutive structure.
The substitutive structure of X0 computed in [10] and the substitutive structure of XP0,R0

computed in [9] satisfy β0 = ω0ω1ω2ω3, β1β2 = ȷ η ω6, β3β4β5β6β7 = ω7ω8ω9ω10ω11, ζ = ρ
and β8 β9 τ = ρωU ρ

−1. We deduce that XP8,R8 = Ω12, XP3,R3 = Ω7, XP1,R1 = X4 and finally
XP0,R0 = X0.

Theorem 11.7 must be compared with Theorem 11.4, giving the substitutive structure of a
minimal subshift X0 of the Jeandel-Rao Wang shift Ω0. In fact, the consequence of the two theorems
is that the subshifts X0 and XP0,R0 have the exact same substitutive structure given as the inverse
limit of the same eventually periodic sequence of 2-dimensional morphisms; see Figure 11.6.

Theorem 11.8 ([9]). The symbolic dynamical system XP0,R0 and the minimal subshift X0 ⊂ Ω0
of the Jeandel-Rao Wang shift have the same substitutive structure in the sense that the following
equalities hold:

β0 = ω0 ω1 ω2 ω3, β1β2 = ȷ η ω6, β3 = ω7, β4 = ω8,
β5 = ω9, β6 = ω10, β7 = ω11, ζ = ρ, β8 β9 τ = ρωU ρ

−1,

where ω0, ω1, ω2, ω3, ȷ, η, ω6, ω7, ω8, ω9, ω10, ω11, ρ were computed in [10] and ωU was first
defined in [7].

Remark 11.9 ([9]). To obtain equalities between substitutions computed from totally different ob-
jects, we use a common convention for the definition of the βi from the induction of toral partitions,
and in [10] for the construction of the ωi from sets of Wang tiles. When constructing the substitu-
tions, we use the radix order to order the images of the letters, that is, short images of letter come
before longer ones, and words of the same length are sorted lexicographically.

The description of the symbolic dynamical system XP0,R0 and the minimal subshift X0 of Jeandel-
Rao aperiodic subshift Ω0 by their substitutive structure allows to prove their topological conjugacy.

Corollary 11.10 ([9]). The subshifts XP0,R0 and X0 are topologically conjugate. The subshifts
XPU ,RU and ΩU are topologically conjugate and are equal to the minimal aperiodic substitutive
subshift XωU . The subshifts XP8,R8 and Ω12 are topologically conjugate. The same holds for inter-
mediate subshifts:

XP1,R1 = ȷ(Ω5), XP3,R3 = Ω7, XP4,R4 = Ω8, XP5,R5 = Ω9, XP6,R6 = Ω10 and XP7,R7 = Ω11.

It also implies the following corollary which can be seen as a generalization of what happens for
Sturmian sequences.

Corollary 11.11 ([9]). The dynamical system (X0,Z2, σ) is uniquely ergodic. The measure-
preserving dynamical system (X0,Z2, σ, ν) is isomorphic to the toral Z2-rotation (R2/Γ0,Z2, R0, λ)
where ν is the unique shift-invariant probability measure on X0 and λ is the Haar measure on
R2/Γ0.
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A consequence of Theorem 11.8 is that for every configuration w ∈ X0 ⊂ Ω0, we can find a
starting point in R2/Γ0 such that the configuration w is a symbolic representation of that starting
point. Thus, the hard work done in [7, 10, 9] allows to answer the question raised in Section 11.4
for configurations in X0.

11.7 A Markov partition for Jeandel-Rao tilings

Markov partitions were originally defined for one-dimensional dynamical systems Z R↷ T2 and were
extended to Zd-actions by automorphisms of compact Abelian group in [130]. We allow ourselves to
use the same terminology and extend the definition proposed in [200, §6.5] for dynamical systems
defined by higher-dimensional actions by rotations.

Definition 11.12 ([200, 8, 9]). A topological partition P of T2 is a Markov partition for Z2 R↷ T2

if

• P gives a symbolic representation of Z2 R↷ T2 and

• XP,R is a (2-dimensional) shift of finite type (SFT).

Thus, we may have Markov partitions associated with aperiodic subshifts of finite type over Z2

coded by toral rotations (thus of zero entropy). This may seem counter-intuitive since Markov
partitions are usually associated with hyperbolic systems (thus with positive entropy). Moreover,
the coding of an irrational rotation on the circle leads to aperiodic Sturmian sequences which are not
SFT. Our opinion is that positive entropy and all associated intuitions follows from the restriction
of Definition 11.12 to the case of Z-actions, but not from the notion of Markov partition itself. In
[8] and [9], we made a choice by using the terminology of Markov partitions in the unusual setup
of Z2-rotations.

Of course, SFTs over Z2 are much different then SFTs over Z. The emptyness of Z2-SFTs is
undecidable [67] and the possible entropies achievable by a Z2-SFT are exactly the non-negative
numbers obtainable as the limit of computable decreasing sequences of rationals [159], as opposed
to be given by an algebraic characterization in the case of Z-SFT, see [200, §4]. In particular, there
exist aperiodic Z2-SFTs of zero entropy which is not possible in the one-dimensional case, since
infinite Z-SFTs have positive entropy and contain a periodic configuration.

A consequence of the three articles [8], [9] and [10] published in 2021 is the following theorem.

Theorem 11.13 ([9]). P0 is a Markov partition for the dynamical system Z2 R0↷ R2/Γ0.

Proof. From Theorem 11.2 proved in [8], the partition P0 gives a symbolic representation of Z2 R0↷
R2/Γ0. It was proved in [10] that X0 is a shift of finite type. From Corollary 11.10 proved in [9],
the subshifts XP0,R0 and X0 are equal. Then, the 2-dimensional subshift XP0,R0 is a shift of finite
type. Thus, P0 is a Markov partition for the dynamical system Z2 R0↷ R2/Γ0.

11.8 Nonexpansive directions in Jeandel-Rao tilings
In 2019-2020, Casey Mann and Jennifer Mcloud-Mann spent a sabbatical year in Bordeaux, thanks
to Idex Bordeaux Visiting Scholars positions. Together, we tried to prove that the Jeandel-Rao
Wang shift Ω0 is uniquely ergodic (see Conjecture 11.17 below). But that turned out to be a difficult
question due to the presence of a horizontal fault line in the Jeandel-Rao Wang shift. Instead, we
decided to describe the nonexpansive directions in the Jeandel-Rao Wang shift. Indeed, these can
be computed from the slopes in the partition P0.
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11 Jeandel-Rao tilings

The notion of Conway worms was considered in [148, §10.5] in the context of tilings by Penrose
kites and darts. It was then defined as “a sequence of bow ties placed end to end” and it was proved
that every tiling by Penrose kites and darts contains arbitrarily long finite Conway worms, see [148,
p. 10.5.8]. Also it was noted that there are 5 different possible slopes for these Conway worms and
the difference between any two of them is a multiple of π

5 .
The understanding of Penrose tilings was greatly improved by N. G. de Bruijn who for the first

time expressed them in terms of cut and project schemes where the aperiodic tilings are described
as the projection of a lattice living in the product of the physical space of dimension two and
some internal space of dimension three [98]. Based on this work, Robinson further developed the
dynamical properties of Penrose tilings [241]. In particular, he expressed Conway worms appearing
in the singular Penrose tilings in terms of coincidences happening in the internal space and noted
that Conway worms come in pairs [241, §6] that he called positive and negative resolutions of a
Conway worm (see also the same idea appearing in [98, Figures 12 and 13]); see also [51, Figure
7.22]. A reproduction of Figure 8 from [241] illustrating the two ways to resolve Conway worms
in the context of Penrose tilings is shown in Figure 11.7. Notice that the existence of an infinite
Conway worm of a given slope α ∈ R ∪ {∞} implies the existence of a tiling of some half-plane
delimited by a line of slope α which has more than one completion to a tiling of the whole plane.
The notion of Conway worms may give more insights on a family of tilings. For instance, it allows
one to prove that tiles occur in only finitely many orientations in parallelogram tilings using a finite
number of shapes [137].

· · · · · ·

· · · · · · · · · · · ·

one
resolution

another
resolution

Figure 11.7: An illustration of an unresolved Conway worm made of two kinds of hexagons together with its
two resolutions within a Penrose tiling.

In the context of subshifts, the concept of Conway worms is formalized in terms of nonex-
pansiveness. Let F be a subspace of Rd. Given t > 0, the t-neighborhood of F is defined by
F t := {g ∈ Zd : dist(g, F ) ≤ t}. Let X ⊂ AZd be a subshift, and for any subset S ⊂ Zd and
configuration x ∈ X, let x|S denote the restriction of x to S. Following Boyle and Lind [94], a
subspace F ⊂ Rd is expansive on X if there exists t > 0 such that for any x, y ∈ X, x|F t = y|F t

implies that x = y. Moreover, a subspace F is nonexpansive if for all t > 0, there exist x, y ∈ X
such that x|F t = y|F t but x ̸= y. If F is expansive, then every translate of F is expansive. Thus,
in the 2-dimensional case, which is our focus, we refer to nonexpansive directions.

Boyle and Lind [94, Theorem 3.7] showed that ifX ⊂ AZd is an infinite subshift, then, for each 0 ≤
n < d, there exists a n-dimensional subspace of Rd that is nonexpansive on X. Answering a question
of Boyle and Lind, Hochman proved that any one-dimensional subspace in the plane R2 occurs as the
unique nonexpansive one-dimensional subspace of a Z2-action [157]. As a consequence, Hochman
proved that a set of one-dimensional subspaces occurs as the set of nonexpansive directions for
a subshift X ⊂ AZ2 if and only if it is closed and non-empty. The notions of expansive and
nonexpansive directions was used to obtain partial results toward solving Nivat’s conjecture, an
important problem in symbolic dynamics, see for instance [117, 111].

The notion of nonexpansive direction can also be stated equivalently in terms of nonexpansive
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11.8 Nonexpansive directions in Jeandel-Rao tilings

half-spaces. Let X ⊂ AZd be a subshift and σ be a Zd-action on X. We say that a half-space
H ⊂ Rd is nonexpansive for σ if there exist x, y ∈ X such that x|Zd∩H = y|Zd∩H but x ̸= y. It was
proved in the preliminary section of [129] that a codimension 1 subspace V of Rd is nonexpansive
for σ if and only if there is a half-space H whose boundary is V and which is nonexpansive for
σ, see [13, Lemma 2.2]. The set of nonexpansive directions is difficult to compute in general and
brings a deeper understanding of a subshift since it is a topological invariant, see [13, Lemma 2.3].

Conway worms can be defined in the context of subshifts from nonexpansiveness. Let x, y ∈ X
be two configurations. The support of positions where x and y are distinct is the set D(x, y) = {n ∈
Zd | xn ̸= yn}. We say that the set D(x, y) is a Conway worm associated to a subspace F if there
exists t > 0 such that ∅ ̸= D(x, y) ⊂ F t. Observe that if S ⊂ Zd is a Conway worm associated
to a subspace F , then F is nonexpansive. Also, reusing the vocabulary proposed in [241], we say
that the restriction of the configurations x and y to the support D(x, y) are two resolutions of the
Conway worm.

In [13], we described the Conway worms and their resolutions in the Jeandel-Rao Wang shift.
As noticed in [163], there exist tilings of the plane containing a bi-infinite horizontal strip of tiles
numbered 0. Since only a tile numbered 9 can be on top of a tile numbered 0, we have the following
bi-infinite strip of height 2:

· · · 0

9

0

9

0
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0

9

0
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9

· · ·
It turns out that the above strip is a Conway worm. Indeed its other resolution can be obtained
by replacing the tiles numbered 9 with tiles numbered 1 and replacing the tiles numbered 0 with
tiles numbered 6:

· · · 6
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· · ·
We observe that both strips have the same constraints on top and at the bottom making them
replaceable by one another. The tiling above and below of the two strips is shown in Figure 11.8.
This means that 0 is the slope of a nonexpansive direction within Jeandel-Rao Wang shift.

With Mann and Mcloud-Mann, we computed the nonexpansive directions for the minimal sub-
shift X0 of the Jeandel-Rao Wang shift Ω0. As opposed to the nonexpansive directions in Penrose
tilings which are the directions perpendicular to the fifth roots of unity, see [162, Theorem 5.1.1],
we obtain a more surprising and far less symmetric result for the minimal subshift X0.
Theorem 11.14 ([13]). The minimal subshift X0 of the Jeandel-Rao Wang shift contains exactly
4 nonexpansive directions whose slopes are {0, φ+ 3,−3φ+ 2,−φ+ 5

2}.
While slope 0 is not a surprise, the other slopes are irrational and their values are unexpected.

In particular, we show that there is a link between the slopes that appear in the Markov partition
provided in [8] and studied more deeply in [9] and the slopes of nonexpansive directions, but
the relation is not equality. This contrasts with well-known cases like Penrose tilings where the
symmetry of the tilings hides a more complex relation. More precisely, we show that slopes of
nonexpansive directions within Jeandel-Rao Wang shift are related to slopes that appear in the
associated Markov partition according to the following table (see [13, Proposition 5.4]):

slope in the Markov Partition slope of associated nonexpansive direction
0 0
∞ φ+ 3
φ −3φ+ 2
φ2 −φ+ 5

2
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Figure 11.8: A partial tiling of the plane with an unresolved Conway worm of slope 0.

The three other nonexpansive directions are illustrated in Figure 11.9 and Figure 11.10.
The computation of the nonexpansive directions made in [13] was done specifically for the par-

tition P0 associated to Jeandel-Rao tilings.

Question 11.15. Let R be a Z2-action on T2 and P be a polygonal partition of T2 whose ver-
tices belong to some quadratic field. Generalize [13, Proposition 5.1] to compute the nonexpansive
directions of the symbolic dynamical system XP,R for arbitrary polygonal partitions P.

11.9 Thompson’s memoir

In their article, Jeandel and Rao provided a list of 33 sets of 11 Wang tiles which are candidates
for being aperiodic 3. This means their algorithm was not able to decide if these sets tile the plane
or not. They took one in the list and they proved it to be aperiodic [163].

One of the set of tiles appeared in the slide #50 of the presentation of Michael Rao in April 2017
(Montreal) calling it a “strange (interesting) candidate”. Here it is:

153sage: from slabbe import WangTileSet
154sage: tiles = "3222␣4221␣4230␣4042␣4140␣0040␣1000␣1101␣2111␣2022␣2122"
155sage: tiles = [tuple(tile) for tile in tiles.split()]
156sage: slide50 = WangTileSet(tiles)
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3https://framagit.org/mrao/small-wang-tile-sets
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Figure 11.9: Tilings of a 20× 20 square illustrating the Conway worms of slope φ+ 3, −3φ+ 2 and −φ+ 5
2 .

The difference between the left and the right images is shown with a colored background.
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Figure 11.10: Tilings of a 30× 30 square illustrating the four Conway worms. The difference between both
images is shown with a colored background. This reminds of the cartwheel tiling in the context
of Penrose tilings [148, Figure 10.5.1 (c)].
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11.10 Open questions

A natural question is to study these remaining 32 candidates. A master student of Uwe Grimm
wrote a magnificent memoir in 2022 where he studied one of the 32 candidates in more details.
Thompson proved it to be related to the Jeandel-Rao one through a substitution. Also Thompson
found a polygonal partition of a φ× (φ+ 4) rectangle describing the tilings allowed by these tiles
[267]. Thompson was master student at Open University in UK and followed courses by Uwe
Grimm at, just before Uwe passed away.

The tile set TY in the memoir of Thompson is the following:
157sage: tiles = "2214␣0424␣1404␣0222␣1222␣2223␣2304␣0400␣0001␣1112␣1011"
158sage: tiles = [tuple(tile) for tile in tiles.split()]
159sage: TY = WangTileSet(tiles)

0 2
2

1
4

1 0
4

2
4

2 1
4

0
4

3 0
2

2
2

4 1
2

2
2

5 2
2

2
3

6 2
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0
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0
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8 0
0

0
1

9 1
1

1
2

101
0

1
1

Note that the set TY studied by Roger Thompson corresponds (up to an isometry) to the strange
interesting candidate mentioned in the slide #50 of the presentation of Michael Rao:

160sage: TY.is_equivalent_up_to_isometry(slide50, certificate=True)
161(True, ((1,4,3,2), {’2’: ’2’, ’4’: ’4’, ’3’: ’3’, ’0’: ’0’, ’1’: ’1’}, {’1’: ’1’, ’2’: ’2’, ’0’: ’

0’}, Substitution 2d: {0: [[1]], 1: [[3]], 2: [[4]], 3: [[9]], 4: [[10]], 5: [[0]], 6: [[2]],
7: [[5]], 8: [[6]], 9: [[8]], 10: [[7]]}))

11.10 Open questions

It was also shown that XP0,R0 is a strict subset of the Jeandel-Rao Wang shift Ω0 [163],
In [10], we also show that Ω0\X0 ̸= ∅ due to the presence of some horizontal fault lines in Ω0, but

we believe that X0 gives an almost complete description of the Jeandel-Rao tilings. More precisely
and as opposed to the minimal subshift of the Kari-Culik tilings [256], we think the following holds.

Conjecture 11.16 ([10]). Ω0 \ X0 is of measure zero for any shift-invariant probability measure
on Ω0.

Although Jeandel-Rao Wang shift Ω0 is not minimal as it contains the proper minimal subshift
XP0,R0 = X0, we believe that it is uniquely ergodic.

Conjecture 11.17 ([9]). The Jeandel-Rao subshift Ω0 is uniquely ergodic.

That conjecture is equivalent to prove that Ω0 \X0 has measure 0 for any shift-invariant proba-
bility measure on Ω0 which was stated as a conjecture in [10] and where some progress was done.
That would also imply the existence of an isomorphism of measure-preserving dynamical systems
between Jeandel-Rao Wang shift (Ω0,Z2, σ, ν) and (R2/Γ0,Z2, R0, λ) where ν would be the unique
shift-invariant probability measure on Ω0 and λ is the Haar measure on R2/Γ0.

This calls for a general theory of d-dimensional subshifts of finite type coded by Markov partitions
of the d-dimensional torus and admitting induced subsystems.

Among the first examples to study are the candidates discovered by Jeandel and Rao (other
than the one chosen by Jeandel and Rao and the one already studied by Thompson as mentioned
in Section 11.9).

Question 11.18. Which one of the 33 candidate sets of 11 Wang tiles found by Jeandel and Rao
are aperiodic?
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11 Jeandel-Rao tilings

It is known in certain cases [63, 64, 65] that cut and project scheme leading to aperiodic tilings
given by a finite set of forbidden rules implies algebraic restrictions on the possible projections. On
this subject, during Sage Days 1284 with Carole Porrier, we implemented in the slabbe package
the question whether a cut and project scheme is determined by its subperiods [231]. Here is what
we obtain.

The Penrose hull is determined by its subperiods:
162sage: from slabbe import cut_and_project_schemes
163sage: c = cut_and_project_schemes.Penrose()
164sage: c.is_determined_by_subperiods()
165True

Ammann-Beenker is not determined by its subperiods:
166sage: c = cut_and_project_schemes.AmmannBeenker()
167sage: c.is_determined_by_subperiods()
168False

Jeandel-Rao is not determined by its subperiods:
169sage: c = cut_and_project_schemes.JeandelRao()
170sage: c.is_determined_by_subperiods()
171False

Question 11.19. Why are Jeandel-Rao tilings not determined by their subperiods, while Penrose
are?

4https://wiki.sagemath.org/days128
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Chapter 12

Metallic mean Wang tiles

“The ultimate test of whether I understand something is if I can explain it to a computer.
I can say something to you and you’ll nod your head, but I’m not sure that I explained it well.

But the computer doesn’t nod its head. It repeats back exactly what I tell it.
In most of life, you can bluff, but not with computers.”

— Donald Knuth
In this chapter, we present a new family of aperiodic Wang tiles related to the metallic mean

that were introduced in [22, 23].

12.1 Definition

Recall that the metallic mean β is the positive root of the polynomial x2 − nx− 1 where n ≥ 1 is
an integer [265], that is,

β = [n;n, n, · · · ] = n+ 1
n+ 1

n+ 1
n+···

= n+ 1
β
.

Metallic means were also called silver means in [249] and noble means in [51].
For every integer n ≥ 1, the nth metallic mean Wang shift Ωn is defined from a set Tn of (n+ 3)2

Wang tiles. An illustration of the set Tn for n ∈ {1, 2, 3} is shown in Figure 12.1. The labels of the
Wang tiles are vectors in N3. In Figure 12.1, we represent vectors as words for economy of space
reasons. For instance, the vector (1, 1, 4) is represented as 114. Note that integers vectors were
already used as labels of Wang tiles in [169, 170], see also [171]. A finite rectangular valid tiling is
shown in Figure 12.2 for the set T3. More images of valid tilings with metallic mean Wang tiles are
available in [22].

12.2 Results from the first article
In the first article, we showed that the metallic mean Wang shift Ωn is self-similar, aperiodic and
minimal.

Theorem 12.1 ([22]). For every integer n ≥ 1,

(i) the metallic mean Wang shift Ωn is self-similar, aperiodic and minimal,

(ii) the inflation factor of the self-similarity of Ωn is the n-th metallic mean, that is, the positive
root of x2 − nx− 1.

Also, when n = 1, Ω1 is equivalent to the Wang shift defined from the 16 Ammann Wang tiles; see
Figure 6.2.
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12 Metallic mean Wang tiles
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Figure 12.1: Metallic mean Wang tile sets Tn for n = 1, 2, 3.

Therefore, the family {Ωn}n≥1 is a generalization of the Ammann aperiodic set of 16 Wang tiles
[148].

In order to describe the substitutive structure of the Wang shift Ωn generated from the set Tn, it
was needed in [22] to introduce a larger set T ′

n satisfying Tn ⊆ T ′
n. It was shown that the set T ′

n is in
bijection with the set of possible return blocks allowing to decompose uniquely the configurations
of Ωn. The return blocks are rectangular blocks of tiles with a unique junction tile (a tile where
horizontal and vertical color stripes intersect) at the lower left corner. Also, it was proved in [22]
that in a valid configuration of Ω′

n, only the tiles from Tn appear. From this observation follows
the self-similarity of Ωn.

12.3 Results from the second article

In the second article, we demonstrated that the tiles from Tn satisfy equations and can even be
defined by them. Therefore, it provides an example of substitutive aperiodic sets of Wang tiles
defined by equations like Kari-Culik sets, see Figure 12.3. The equations satisfied by the tiles are
derived from a function that expresses a relation between the labels of the Wang tiles. The function
provides an independent definition of the family of metallic mean Wang tiles as the instances of an
aperiodic computer chip. See [23] for the details.

Among the main results, we proved that Ωn is aperiodic for another reason. Namely, the Z2

shift action on Ωn is an almost 1-to-1 extension of a minimal Z2-action by rotations on T2. This
reminds of a result proved for Penrose tilings [241] and the two reasons for them to be aperiodic.
Aperiodicity of Penrose tilings follows from its self-similarity [228] and from the fact of being a
cut-and-project scheme [98, 51].

In Kari–Culik tilings [167, 114], there is a well-defined notion of average [125] of the top tile
labels along a bi-infinite horizontal row. The value from one row to the next row is described by
a piecewise rationally multiplicative map. In this context, metallic mean Wang shifts also behave
like Kari–Culik tilings. It involves the consideration of the average of specific inner products and
irrational rotations instead of multiplications, see Figure 12.4.

We show that the average of the dot products of the vector 1
nd = 1

n(0,−1, 1) with the top labels
of a given row in a valid configuration Z2 → Tn in Ωn is well-defined and takes a value in the
interval [0, 1]. By symmetry of the set Tn, the same holds for the right labels of a given column.
By considering the row and column going through the origin of a configuration, the two averages
define a map Φn : Ωn → T2. We prove that this map is a factor map from the Wang shift to the
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12.3 Results from the second article
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Figure 12.2: A valid 15× 15 pattern with Wang tile set T3.

2-torus.

Theorem 12.2 ([23]). Let d = (0,−1, 1), n ≥ 1 be an integer and Ωn be the nth metallic mean
Wang shift. The map

Φn : Ωn → T2

w 7→ lim
k→∞

1
2k + 1

k∑

i=−k

(
⟨ 1

nd,Right(w0,i)⟩
⟨ 1

nd,Top(wi,0)⟩

)
(12.1)

is a factor map, that is, it is continuous, onto and commutes the shift Z2 σ↷ Ωn with the toral
Z2-rotation Z2 Rn↷ T2 by the equation Φn ◦ σk = Rk

n ◦ Φn for every k ∈ Z2 where

Rn : Z2 × T2 → T2

(k, x) 7→ Rk
n(x) := x+ βk

and β = n+
√

n2+4
2 is the nth metallic mean, that is, the positive root of the polynomial x2− nx− 1.

As a consequence of Theorem 12.2, we deduce that Ωn is aperiodic because β is irrational and
Rn is a free Z2-action. Note that since β − β−1 = n, we have β = β−1 (mod 1).
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12 Metallic mean Wang tiles

Aperiodic sets of Wang tiles

Positive entropy

Kari [167]
Culik [114]
and their extensions [128]

Matching rules satisfy arithmetic Equations

Substitutive

this is non-empty!
Ammann 16 and
metallic mean
Wang tiles

Berger
Robinson
Knuth
Jeandel–Rao

Figure 12.3: A Venn diagram of aperiodic sets of Wang tiles. Aperiodicity of Kari and Culik sets of tiles and
their extensions follows from the arithmetic Equations satisfied by their matching rules. We
show that the dashed region in the Venn diagram is non-empty, that is, there exists a family of
substitutive (self-similar) aperiodic sets of Wang tiles whose matching rules satisfy arithmetic
Equations.

Theorem 12.2 is an analogue of a result known for Kari and Culik aperiodic Wang tilings which
satisfy equations involving balanced representations of real numbers and orbits of piecewise ratio-
nally multiplicative maps, see also Theorem 16 in [128] and Proposition 3 in [256]. Here the result
applies to all of the configurations in the Wang shift Ωn.

As proved for Jeandel–Rao Wang shift [8], we have the following additional topological and
measurable properties for the factor map Φn. A similar result holds for Penrose tilings [241].

Theorem 12.3 ([23]). The Wang shift Ωn and the Z2-action Rn have the following properties:

(i) Z2 Rn↷ T2 is the maximal equicontinuous factor of Z2 σ↷ Ωn,

(ii) the factor map Φn : Ωn → T2 is almost one-to-one and its set of fiber cardinalities is {1, 2, 8},

(iii) the shift-action Z2 σ↷ Ωn on the metallic mean Wang shift is uniquely ergodic,

(iv) the measure-preserving dynamical system (Ωn,Z2, σ, ν) is isomorphic to (T2,Z2, Rn, λ) where
ν is the unique shift-invariant probability measure on Ωn and λ is the Haar measure on T2.

12.4 Open questions

Note that the nth metallic mean is a quadratic Pisot unit, that is, it is an algebraic unit of degree
two and all its algebraic conjugates have modulus strictly less than one. The other quadratic Pisot
units are the positive roots of x2 − nx+ 1 for n ≥ 3. The family of quadratic Pisot units has nice
properties [90, 182, 209]; see also [32]. The continued fraction expansion of the positive root of
x2 − nx+ 1 is [n− 1; (1, n− 2)∞]. In particular, it is not purely periodic.

Question 12.4 ([22]). Let β be a positive quadratic Pisot unit other than the metallic means. Can
we construct a self-similar set of Wang tiles whose inflation factor is β?

An alternative question is about those quadratic integers whose continued fraction expansion is
purely periodic.
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Figure 12.4: A 10 × 5 valid rectangular tiling with the set Tn with n = 3. The numbers indicated in the
right margin are the average of the inner products ⟨ 1

nd, v⟩ over the vectors v appearing as top
(or bottom) labels of a horizontal row of tiles and where d = (0,−1, 1). We observe that these
numbers increase by 3

10 (mod 1) from row to row. The number 3
10 is equal to the frequency of

columns containing junction tiles (a junction tile is a tile whose labels all start with 0). Observe
that this is a cylindrical tiling (left and right outer labels of the rectangle match) which simplifies
the equations involved because the left and right carries cancel.

Question 12.5 ([22]). Let β be a positive quadratic integer whose continued fraction expansion is
purely periodic. Does there exist a set of Wang tiles such that its Wang shift is self-similar with
inflation factor equal to β?

The procedure explained in [148, p.594–598] starts from the Ammann A2 L shapes and constructs
a set of 16 Wang tiles which we show is equivalent to the set T1. A question we can ask is whether
this construction can be inverted. More precisely, starting from the Ammann set of 16 Wang tiles,
can we recover the two Ammann L-shapes with their Ammann bars on them? In general, we ask
the following question.

Question 12.6 ([22]). For every integer n ≥ 1, can we find geometrical shapes with Ammann bars
on them such that encoding their tilings by rhombi along a pair of Ammann bars is equivalent to
the tiles Tn?

Jeandel–Rao Wang tiles considered in Chapter 11 correspond to computing the orbit of points
in the plane R2 under the translations by +1 horizontally and +1 vertically modulo the lattice
Γ0. How come this is possible is still a mystery. The link between the 11 Jeandel–Rao Wang tiles
themselves and the golden ratio or toral rotation R0 remains unclear. Unlike the Kari example,
the values 0, 1, 2, 3, 4 of the labels of the Jeandel–Rao Wang tiles are five distinct symbols rather
than arithmetic values. They do not satisfy a known equation.

After the discovery of the family of metallic mean Wang tiles and the expression of the Ammann
set as T1, the following questions can be raised.

Question 12.7 ([23]). Let T be a set of Wang tiles such that the Wang shift ΩT is aperiodic.

• Is it multiplicative (Kari-Culik-like)? More precisely, can we replace the labels of the tiles in
T by arithmetic values in such a way that an equation similar to (6.1) is satisfied?

• Is it additive (metallic mean-like)? More precisely, can we replace the labels of the tiles in
T by integer vectors computed from floors of linear forms as in [23, Proposition 7.4] and
satisfying additive equations as in [23, Theorem B]?
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12 Metallic mean Wang tiles

Does there exists an aperiodic set of Wang tiles which is neither multiplicative nor additive?

Solving Question 12.7 for Jeandel–Rao Wang tiles would improve our understanding of the
Jeandel–Rao Wang shift. Hopefully it would allow to generate more examples maybe not re-
lated to the golden ratio and that are not self-similar. Remember that the computations made by
Jeandel and Rao took one year using 100 cpus to explore exhaustively the sets of 11 Wang tiles
[163]. Finding new examples by exploring all sets of 12, 13 or 14 Wang tiles becomes soon out of
reach. We need to understand what is happening in order to find other examples and characterize
them.

Question 12.8 ([23]). If an aperiodic set of Wang tiles is additive (metallic mean-like) with labels
given by integer vectors satisfying equations, can we use the equations to directly prove that the
Wang shift ΩT is aperiodic following the short arithmetical argument for the nonperiodicity of
Kari’s tile set?

Finding an answer to Question 12.8 for the Ammann set of 16 Wang tiles was the original
motivation of the author which led to the discovery of the family of metallic mean Wang tiles.
Nevertheless, Question 12.8 remains open even for the Ammann 16 Wang tiles and the family of
metallic mean Wang tiles.

In general, we may ask the following question.

Question 12.9 ([23]). For which invertible matrix M ∈ GL2(R) does there exist a set of Wang
tiles T such that the Wang shift ΩT is isomorphic, as a measure-preserving dynamical system, to
the toral Z2-rotation R : Z2 × T2 → T2 defined by Rk(x) = x + Mk on the 2-dimensional torus
T2 = (R/Z)2?

The Markov partition associated to Jeandel–Rao tiles and action R0 on R2/Γ0 is related to the
golden ratio [8]. We now have a family of Z2-actions related to the metallic mean quadratic integers
associated to the polygonal partition Pn = {Φn([t])}t∈Tn of T2. Can we find examples related to
other numbers?

Question 12.10 ([23]). For which Z2-actions defined by rotations on a 2-dimensional torus does
there exist a Markov Partition? When is this partition smooth/polygonal?

As for toral hyperbolic automorphisms, we can expect that smooth Markov partitions are asso-
ciated to algebraic integers of degree 2 and that the partition is piecewise linear in this case [106].
Markov partitions for typical toral hyperbolic automorphisms have fractal boundaries [93].

The relation with toral hyperbolic automorphisms does not come out of nowhere. Indeed, the self-
similarity of Ωn proved in [22] has an incidence matrix of size (n+3)2× (n+3)2. Its eigenvalues are
all quadratic integers, 0 or ±1. This incidence matrix acts hyperbolically as a toral automorphism
on a subspace of R(n+3)2 thus admits a Markov partition with piecewise linear boundaries. A link
between this Markov partition and the partition Pn can be expected, because this is what happens
for 1-dimensional sequences. Indeed, the Markov partition associated to the toral automorphism( 1 1 1

1 0 0
0 1 0

)
is a suspension of the Rauzy fractal [237] as nicely illustrated in a talk by Timo Jolivet

[164].

Question 12.11 ([23]). What is the relation between the Markov partition for the hyperbolic toral
automorphism defined from the incidence matrix of the self-similarity of Ωn and the Markov parti-
tion Pn associated to Z2 σ↷ Ωn?

The symmetric properties of Ωn and of the partition Pn make them a good object of study to
tackle these questions in more generality.
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Chapter 13

Multidimensional Sturmian configura-
tions

“The essential point of the positivist theory is that there is no other source of knowledge
except the straight and short way of perception through the senses.”

— Max Plank
In Chapter 8, we described our work on indistinguishable asymptotic pairs in the one-dimensional

case which led to a new characterization of Sturmian sequences [3]. With Barbieri, we explored
this notion further and we soon discovered that it leads to a characterization of multidimensional
Sturmian configurations over Zd [2]. The results provide a generalization to Zd of the characteriza-
tion of Sturmian sequences by their factor complexity n+ 1. This work was performed during the
pandemic with all the introspection necessary to prove our intuitions on this subject. We present
the main results of this work in this chapter.

13.1 Indistinguishable asymptotic pairs
Asymptotic pairs, also known as homoclinic pairs, are pairs of points in a dynamical system whose
orbits coalesce. These were first studied by Poincaré [35] in the context of the three body problem
and used to model chaotic behavior. Namely, two orbits which remain arbitrarily close outside a
finite window of time may be used to represent pairs of trajectories that despite having similar
behavior for an arbitrarily long time, present abrupt local differences.

In this chapter, we consider asymptotic pairs of zero-dimensional expansive actions of Zd. Con-
cretely, given a finite set Σ, we consider the space of configurations ΣZd = {x : Zd → Σ} endowed
with the prodiscrete topology and the shift action Zd σ↷ ΣZd . In this setting, two configura-
tions x, y ∈ ΣZd are asymptotic if x and y differ in finitely many sites of Zd. The finite set
F = {v ∈ Zd : xv ̸= yv} is called the difference set of (x, y). An example of an asymptotic pair
when d = 2 is shown in Figure 13.1.

Given two asymptotic configurations x, y ∈ ΣZd , we want to compare the number of occurrences
of patterns. A pattern is a function p : S → Σ where S, called the support of p, is a finite subset
of Zd. The occurrences of a pattern p ∈ ΣS in a configuration x ∈ ΣZd is the set occp(x) := {n ∈
Zd : σn(x)|S = p}. The language of a configuration x ∈ ΣZd over a finite support S ⊂ Zd is
LS(x) = {p ∈ ΣS : occp(x) ̸= ∅}. When x, y ∈ ΣZd are asymptotic configurations, the difference
occp(x) \ occp(y) is finite because the occurrences of p are the same far from the difference set of x
and y. We say that (x, y) is an indistinguishable asymptotic pair if (x, y) is asymptotic and
the following equality holds

# (occp(x) \ occp(y)) = # (occp(y) \ occp(x)) (13.1)

for every pattern p of finite support.
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13 Multidimensional Sturmian configurations

x y

1 0 2 2 1 0 2 1 0 2 1 1 0 2 1
0 2 1 1 0 2 1 0 2 1 0 2 2 1 0
2 1 0 2 2 1 0 2 1 0 2 1 1 0 2
1 0 2 1 1 0 2 1 0 2 1 0 2 2 1
0 2 1 0 2 2 1 0 2 1 0 2 1 1 0
2 1 0 2 1 1 0 2 1 0 2 1 0 2 2
1 0 2 1 0 2 2 1 0 2 1 0 2 1 1
0 2 1 0 2 1 1 0 2 1 0 2 1 0 2
2 1 0 2 1 0 2 2 1 0 2 1 0 2 1
1 0 2 1 0 2 1 0 2 2 1 0 2 1 0
2 2 1 0 2 1 0 2 1 1 0 2 1 0 2
1 1 0 2 1 0 2 1 0 2 2 1 0 2 1
0 2 2 1 0 2 1 0 2 1 1 0 2 1 0
2 1 1 0 2 1 0 2 1 0 2 2 1 0 2
1 0 2 2 1 0 2 1 0 2 1 1 0 2 1

1 0 2 2 1 0 2 1 0 2 1 1 0 2 1
0 2 1 1 0 2 1 0 2 1 0 2 2 1 0
2 1 0 2 2 1 0 2 1 0 2 1 1 0 2
1 0 2 1 1 0 2 1 0 2 1 0 2 2 1
0 2 1 0 2 2 1 0 2 1 0 2 1 1 0
2 1 0 2 1 1 0 2 1 0 2 1 0 2 2
1 0 2 1 0 2 2 1 0 2 1 0 2 1 1
0 2 1 0 2 1 0 2 2 1 0 2 1 0 2
2 1 0 2 1 0 2 1 1 0 2 1 0 2 1
1 0 2 1 0 2 1 0 2 2 1 0 2 1 0
2 2 1 0 2 1 0 2 1 1 0 2 1 0 2
1 1 0 2 1 0 2 1 0 2 2 1 0 2 1
0 2 2 1 0 2 1 0 2 1 1 0 2 1 0
2 1 1 0 2 1 0 2 1 0 2 2 1 0 2
1 0 2 2 1 0 2 1 0 2 1 1 0 2 1

Figure 13.1: The indistinguishable asymptotic configurations x, y ∈ {0, 1, 2}Z2 are shown on the sup-
port J−7, 7K × J−7, 7K. The two configurations are equal except on their difference set
F = {0,−e1,−e2} shown in red.

In other words, an asymptotic pair (x, y) is indistinguishable if every pattern appears the same
number of times in x and in y while overlapping the difference set. The pair of configurations x
and y shown in Figure 13.1 is an example of an indistinguishable asymptotic pair: we may check
by hand that Equation (13.1) holds for patterns with small supports such as symbols (patterns of
shape {0}), dominoes (patterns of shape {0, e1} and {0, e2}), etc. For instance, the configurations
x and y in Figure 13.1 contain eight different patterns with support {0, e1, 2e1, e2}, each occurring
exactly once while overlapping the difference set, see Figure 13.2.

The notion of indistinguishable asymptotic pairs appears naturally in Gibbs theory. This theory
studies measures on symbolic dynamical systems which are at equilibrium in the sense that the
conditional pressure for every finite region of the lattice is maximized, so that every finite region is
in equilibrium with its surrounding. See [141, 189, 244, 61] for further background. An important
component of Gibbs measures, the specification, can be formalized by means of a shift-invariant
cocycle in the equivalence relation of asymptotic pairs, see [108, 60]. With an appropriate norm,
the space of continuous shift invariant cocycles on the asymptotic relation becomes a Banach space,
and every asymptotic pair induces a continuous linear functional through the canonical evaluation
map.

The set of indistinguishable asymptotic pairs are precisely those which induce the trivial linear
functional and thus a natural question is if there is an underlying dynamical structure behind this
property. We shall not speak any further of Gibbs theory in this work and study indistinguishable
asymptotic pairs without further reference to their origin in Gibbs theory. An interested reader can
find out more about the role of indistinguishable asymptotic pairs in the aforementioned setting by
reading sections 2 and 3 of [60].

In the case of dimension d = 1, it was shown that for the difference set F = {−1, 0} ⊂ Z,
indistinguishable asymptotic pairs are precisely the étale limits of characteristic bi-infinite Sturmian
sequences ([3, Theorem B]). In the case where one of the configurations in the indistinguishable
pair is recurrent, the asymptotic pair can only be a pair of characteristic bi-infinite Sturmian
sequences associated to a fixed irrational value ([3, Theorem A]). Furthermore, it was shown that

108



13.2 Main results

a pattern in x same pattern in y

0 2 2 1 0 2
2 1 1 0 2 1
1 0 2 2 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 0 2 2 1
1 0 2 1 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 1 0 2 1
1 0 2 2 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 0 2 2 1
1 0 2 1 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 1 0 2 1
1 0 2 2 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 0 2 2 1
1 0 2 1 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 1 0 2 1
1 0 2 2 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 0 2 2 1
1 0 2 1 1 0
0 2 1 0 2 2

a pattern in x same pattern in y

0 2 2 1 0 2
2 1 1 0 2 1
1 0 2 2 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 0 2 2 1
1 0 2 1 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 1 0 2 1
1 0 2 2 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 0 2 2 1
1 0 2 1 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 1 0 2 1
1 0 2 2 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 0 2 2 1
1 0 2 1 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 1 0 2 1
1 0 2 2 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 0 2 2 1
1 0 2 1 1 0
0 2 1 0 2 2

Figure 13.2: The 8 patterns of shape {0, e1, 2e1, e2} appearing in the configurations x and y. All of them
appear intersecting the difference set in x and y.

any indistinguishable asymptotic pair in ΣZ can be obtained from these base cases through the
use of a substitution and the shift map ([3, Theorem C]), thus providing a full characterization of
indistinguishable asymptotic pairs in Z.

13.2 Main results

In this work, we extend [3, Theorem A] to the multidimensional setting. It is based on the following
additional condition made on the difference set. Let {e1, . . . , ed} denote the canonical basis of Zd.
We say that two indistinguishable asymptotic configurations x, y ∈ {0, 1, . . . , d}Zd satisfy the flip
condition if

• their difference set is F = {0,−e1, . . . ,−ed},

• every symbol in {0, 1, . . . , d} occurs in x and y at the support F , and

• the map defined by xn 7→ yn for every n ∈ F is a cyclic permutation on the alphabet
{0, 1, . . . , d}.

Without lost of generality, we assume that x0 = 0 and yn = xn − 1 mod (d + 1) for every n ∈ F .
For example, the indistinguishable asymptotic pair (x, y) illustrated in Figure 13.1 satisfies the flip
condition with (x0, x−e1 , x−e2) = (0, 1, 2) and (y0, y−e1 , y−e2) = (2, 0, 1).

It is a well known fact that Sturmian configurations in dimension one can be characterized by
their complexity [216, 113], that is, they are exactly the bi-infinite recurrent words in which exactly
n+1 subwords of length n occur for every n ∈ N. The first result provides a similar characterization
of indistinguishable asymptotic pairs satisfying the flip condition by their pattern complexity which
does not require uniform recurrence, or even recurrence, as an hypothesis.
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13 Multidimensional Sturmian configurations

Theorem 13.1 ([2]). Let d ≥ 1 and x, y ∈ {0, 1, . . . , d}Zd be an asymptotic pair satisfying the flip
condition with difference set F = {0,−e1, . . . ,−ed}. The following are equivalent:

(i) For every nonempty finite connected subset S ⊂ Zd and p ∈ LS(x) ∪ LS(y), we have

# (occp(x) \ occp(y)) = 1 = # (occp(y) \ occp(x)) .

(ii) The asymptotic pair (x, y) is indistinguishable.

(iii) For every nonempty finite connected subset S ⊂ Zd, the pattern complexity of x and y is

#LS(x) = #LS(y) = #(F − S).

The proof of Theorem 13.1 relies on an extension of the notion of bispecial factor to the setting of
multidimensional configurations. Given a language, a bispecial factor is a word that can be extended
in more than one way to the left and to the right. The bilateral multiplicity of bispecial factors in
a one-dimensional language is closely related to the complexity of that language, see [104]. Here,
for a connected support S ⊂ Zd and two distinct positions a, b ∈ Zd \ S such that S ∪ {a}, S ∪ {b}
and S ∪ {a, b} are connected, we say that a pattern w : S → A is bispecial if it can be extended
in more than one way at position a and at position b. The description of the bispecial patterns
of indistinguishable asymptotic pairs and their multiplicities, provides us a tool for bounding their
pattern complexity. Reciprocally, the rigid pattern complexity given in Theorem 13.1 forces the
extension graphs associated to the bispecial patterns to have no cycle, which in turn provides us a
way to show that the configurations are indistinguishable. In one dimension, sequences such as the
extension graphs of bispecial factors are trees are known as dendric words [73] and thus we may
think of our construction as multidimensional analogues of those.

When S is a d-dimensional rectangular block, the number #(F − S) from Theorem 13.1 admits
a nice form. When d = 1, we compute #(F − S) = #({0,−1} − {0, 1, . . . , n − 1}) = n + 1 which
is the factor complexity function for 1-dimensional Sturmian words. When d = 2, #(F − S) =
#({(0, 0), (−1, 0), (0,−1)}−{(i, j) : 0 ≤ i < n, 0 ≤ j < m}) = mn+m+n is the rectangular pattern
complexity of a discrete plane with totally irrational (irrational and rationally independent) slope,
see [87] for further references. With our result above, we can provide an explicit formula for the
rectangular pattern complexity in every dimension.

Corollary 13.2 ([2]). Let d ≥ 1 and (m1, . . . ,md) ∈ Nd. The rectangular pattern complexity of an
indistinguishable asymptotic pair x, y ∈ {0, 1, . . . , d}Zd satisfying the flip condition is

#L(m1,...,md)(x) = #L(m1,...,md)(y) = m1 · · ·md

(
1 + 1

m1
+ · · ·+ 1

md

)
.

The next result provides a beautiful connection between indistinguishable asymptotic pairs sat-
isfying the flip condition and codimension-one (dimension of the internal space) cut and project
schemes, see [154] for further background, and more precisely with multidimensional Sturmian
configurations. The definition of multidimensional Sturmian configurations from codimension-one
cut and project schemes is fully described in Section 13.3. A quick and easy definition of mul-
tidimensional Sturmian configurations can be given with the following formulas. Given a totally
irrational vector α = (α1, . . . , αd) ∈ [0, 1)d, the lower and upper characteristic d-dimensional
Sturmian configurations with slope α are given by

cα : Zd → {0, 1, . . . , d}
n 7→

d∑
i=1

(⌊αi + n · α⌋ − ⌊n · α⌋) and
c′

α : Zd → {0, 1, . . . , d}
n 7→

d∑
i=1

(⌈αi + n · α⌉ − ⌈n · α⌉) .
(13.2)
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It turns out that these configurations are examples of indistinguishable asymptotic pairs which
satisfy the flip condition. In fact, we show that a pair of uniformly recurrent asymptotic configu-
rations is indistinguishable and satisfies the flip condition if and only if it is a pair of characteristic
d-dimensional Sturmian configurations for some totally irrational slope.

Theorem 13.3 ([2]). Let d ≥ 1 and x, y ∈ {0, 1, . . . , d}Zd such that x is uniformly recurrent. The
pair (x, y) is an indistinguishable asymptotic pair satisfying the flip condition if and only if there
exists a totally irrational vector α ∈ [0, 1)d such that x = cα and y = c′

α are the lower and upper
characteristic d-dimensional Sturmian configurations with slope α.

The indistinguishable asymptotic pair shown in Figure 13.1 is an example as such, where x = cα

and y = c′
α with α = (α1, α2) = (

√
2/2,
√

19 − 4). Notice that cα and c′
α are uniformly recurrent

when α contains at least an irrational coordinate, so that hypothesis is really only used in one
direction of the theorem. Note that a version of Theorem 13.3 for rational vector α ∈ Qd was
considered in [14] with an infinite difference set of the form F +K where K ⊂ Zd is some lattice.

The link with codimension-one cut and project schemes can be illustrated as follows. The con-
figurations x = cα and y = c′

α encode the rhombi obtained as the projection of the cube faces in a
discrete plane of normal vector (1− α1, α1 − α2, α2), see Figure 13.3. This three symbol coding of
a discrete plane was proposed in [161], see also [75].
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Figure 13.3: The configurations x and y from Figure 13.1 are encoding a tiling of the plane [41] by three
types of pointed rhombus drawn using Jolivet’s notation [165, p. 112]. The tilings shown above
correspond to the projection of the surface of a discrete plane of normal vector (1 − α1, α1 −
α2, α2) ≈ (0.293, 0.348, 0.359), with α = (α1, α2) = (

√
2/2,
√

19 − 4), in 3 dimensional space,
and their difference can be interpreted as the flip of a unit cube shown in yellow.
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13 Multidimensional Sturmian configurations

We also prove a slightly more general version of Theorem 13.3. We say that two indistinguishable
asymptotic configurations x, y ∈ ΣZd satisfy the affine flip condition if their difference set F has
cardinality #F = d+ 1, there is m ∈ F such that (F −m) \ {0} is a base of Zd, the restriction x|F
is a bijection F → Σ and the map defined by xn 7→ yn for every n ∈ F is a cyclic permutation on
Σ.

Corollary 13.4 ([2]). Let d ≥ 1 and x, y ∈ ΣZd such that x is uniformly recurrent. The pair
(x, y) is an indistinguishable asymptotic pair satisfying the affine flip condition if and only if there
exist a bijection τ : {0, 1, . . . , d} → Σ, an invertible affine transformation A ∈ Aff(Zd) and a totally
irrational vector α ∈ [0, 1)d such that x = τ ◦ cα ◦A and y = τ ◦ c′

α ◦A.

If we further assume that the configurations in the asymptotic pair are uniformly recurrent,
we can put together Theorem 13.1 and Theorem 13.3 and obtain the following characterization of
uniformly recurrent multidimensional Sturmian configurations in terms of their pattern complexity.
This generalizes the well-known theorem of Morse-Hedlund-Coven to higher dimensions [216, 113].

Corollary 13.5 ([2]). Let d ≥ 1 and x, y ∈ {0, 1, . . . , d}Zd be an asymptotic pair such that x is
uniformly recurrent and which satisfies the flip condition with difference set F = {0,−e1, . . . ,−ed}.
The following are equivalent:

(i) For every nonempty finite connected subset S ⊂ Zd and p ∈ LS(x, y), we have

# (occp(x) \ occp(y)) = 1 = # (occp(y) \ occp(x)) .

(ii) The asymptotic pair (x, y) is indistinguishable.

(iii) For every nonempty finite connected subset S ⊂ Zd, we have

#LS(x) = #LS(y) = #(F − S).

(iv) There exists a totally irrational vector α ∈ [0, 1)d such that x = cα and y = c′
α.

13.3 A codimension-one cut and project scheme

Cut and project schemes of codimension-one (dimension of the internal space) can be defined in
several ways (for a different definition see [154]). In what follows we follow the formalism of [51,
§7], but note that we need to adapt it in order to describe symbolic configurations over a lattice
Zd. Let d ≥ 1 be an integer and

π : Rd+1 → Rd

(x0, x1, . . . , xd) 7→ (x1, . . . , xd)

be the projection of Rd+1 in the physical space Rd. Let α0 = 1, αd+1 = 0 and α = (α1, . . . , αd) ∈
[0, 1)d be a totally irrational vector, that is such that {1, α1, . . . , αd} is linearly independent over
Q. Let

πint : Rd+1 → R/Z
(x0, x1, . . . , xd) 7→ ∑d

i=0 xiαi

be the projection of Rd+1 in the internal space R/Z. Consider the lattice L = Zd+1 ⊂ Rd+1

whose image is π(L) = Zd. The projection on the physical space is not injective when restricted to
the lattice L = Zd+1. But we have that condition (7.1) holds since

Kerπ ∩ L = Z× {0}d ⊆ Kerπint.
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13.3 A codimension-one cut and project scheme

Thus, this is the setting of a codimension-one (d + 1)-to-d degenerate cut and project scheme
summarized in the following diagram:

W R/Z Rd+1 Rd

πint(L) L π(L) ⋏(W )

⊂
πint π

⊂ dense ⊂ ⊂

⋆

⊃

We deduce that the star map of this cut and project scheme is defined as

n⋆ = α · n mod 1 (13.3)

for every n ∈ π(L) = Zd. For a given window W ⊂ R/Z in the internal space,

⋏(W ) := {x ∈ L | x⋆ ∈W}
is the projection set within the cut and project scheme, where L = π(L). If W ⊂ R/Z is a relatively
compact set with non-empty interior, any translate t+⋏(W ) of the projection set, t ∈ Rd, is called
a model set.

If W = [0, 1), then ⋏(W ) = Zd. Thus, if W ⊂ [0, 1), then ⋏(W ) ⊂ Zd. Moreover, if {Wi}i∈{0,...,d}
is a partition of [0, 1), then {⋏(Wi)}i∈{0,...,d} is a partition of Zd. Using this idea, we now build
configurations Zd → {0, 1, . . . , d} according to a partition of R/Z, or equivalently of the interval
[0, 1), into consecutive intervals.
Definition 13.6 ([2]). Let α = (α1, . . . , αd) ∈ [0, 1)d be a totally irrational vector and τ be the
permutation of {1, . . . , d} ∪ {0, d + 1} which fixes {0, d + 1} and such that 0 = ατ(d+1) < ατ(d) <
· · · < ατ(1) < ατ(0) = 1. For every i ∈ {0, 1, . . . , d}, let

Wi = [1− ατ(i), 1− ατ(i+1)), W ′
i = (1− ατ(i), 1− ατ(i+1)]

be such that {Wi}i∈{0,...,d} and {W ′
i}i∈{0,...,d} are two partitions of the interval [0, 1). The configu-

rations
cα : Zd → {0, 1, . . . , d}

n 7→ i if n⋆ ∈Wi
and c′

α : Zd → {0, 1, . . . , d}
n 7→ i if n⋆ ∈W ′

i

are respectively the lower and upper characteristic d-dimensional Sturmian configurations
with slope α ∈ [0, 1)d. Moreover, if ρ ∈ R/Z, the configurations

sα,ρ : Zd → {0, 1, . . . , d}
n 7→ i if n⋆ + ρ ∈Wi

and s′
α,ρ : Zd → {0, 1, . . . , d}

n 7→ i if n⋆ + ρ ∈W ′
i

are respectively the lower and upper d-dimensional Sturmian configurations with slope
α ∈ [0, 1)d and intercept ρ ∈ R/Z.

It turns out that configurations sα,ρ and s′
α,ρ can be expressed by a formula involving a sum of

differences of floor functions thus extending the definition of Sturmian sequences by mechanical
sequences [216]. It also reminds of recent progresses on Nivat’s conjecture where configurations
with low pattern complexity are proved to be sums of periodic configurations [173, 266], although
here it involves a sum of non-periodic configurations.
Lemma 13.7 ([2]). Let α = (α1, . . . , αd) ∈ [0, 1)d be a totally irrational vector and ρ ∈ R/Z. The
lower and upper d-dimensional Sturmian configurations with slope α and intercept ρ are given by
the following rules:

sα,ρ : Zd → {0, 1, . . . , d}
n 7→

d∑
i=1

(⌊αi + n · α+ ρ⌋ − ⌊n · α+ ρ⌋) ,
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13 Multidimensional Sturmian configurations

and
s′

α,ρ : Zd → {0, 1, . . . , d}
n 7→

d∑
i=1

(⌈αi + n · α+ ρ⌉ − ⌈n · α+ ρ⌉) .

When d = 1, sα,ρ and s′
α,ρ correspond to lower and upper mechanical words defined in [216],

see also [202, 38, 33]. When d = 2, they are in direct correspondence to discrete planes as defined
in [87, 39, 41]. See also Jolivet’s Ph.D. thesis [165]. In general, we say that a configuration in
{0, 1, . . . , d}Zd is Sturmian, if it coincides either with sα,ρ or s′

α,ρ for some ρ ∈ R and totally
irrational α ∈ [0, 1)d.

When ρ = 0, we have sα,0 = cα and s′
α,0 = c′

α. Thus, Equation (13.2) follows from Lemma 13.7.
The fact that the configurations cα and c′

α are encodings of codimension-one cut and project
schemes is illustrated with α = (α1, α2) = (

√
2/2,
√

19−4) in Figure 13.3 in which we see a discrete
plane in dimension 3 of normal vector (1− α1, α1 − α2, α2) ≈ (0.293, 0.348, 0.359).

13.4 A factor map

Let α ∈ [0, 1)d and consider the dynamical system Zd R↷ R/Z where R : Zd × R/Z → R/Z is the
continuous Zd-action on R/Z defined by

Rn(x) := R(n, x) = x+ n · α

for every n ∈ Zd.
Recall that an action is minimal if every orbit is dense. Following Section 2.4, we have a factor

map from the subshift of a multidimensional Sturmian configuration to the torus.

Lemma 13.8 ([2]). Let α ∈ [0, 1)d be totally irrational and consider the topological partition of the
circle

P = {Int(Wi)}i∈{0,1,...,d}.

1. The partition P gives a symbolic representation of the dynamical system Zd R↷ R/Z.

2. The symbolic dynamical system XP,R is minimal and satisfies XP,R = {σkcα : k ∈ Zd}.

3. f : XP,R → R/Z where f(x) ∈ ⋂∞
n=0Dn(w) is a factor map.

13.5 Open questions
To fully generalize the theorem of Morse-Hedlund-Coven, we would hope the equivalence holds
for single configurations and not only for pairs of asymptotic configurations satisfying the flip
condition. More precisely, in the case of uniformly recurrent configurations, we believe that the
pattern complexity characterizes multidimensional Sturmian configurations. Let α = (α1, . . . , αd) ∈
[0, 1)d be a totally irrational vector and ρ ∈ R/Z. The lower and upper d-dimensional Sturmian
configurations with slope α and intercept ρ are given by the following rules [2, Lemma 4.3]:

sα,ρ : Zd → {0, 1, . . . , d}
n 7→

d∑
i=1

(⌊αi + n · α+ ρ⌋ − ⌊n · α+ ρ⌋) ,

and
s′

α,ρ : Zd → {0, 1, . . . , d}
n 7→

d∑
i=1

(⌈αi + n · α+ ρ⌉ − ⌈n · α+ ρ⌉) .
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13.5 Open questions

Question 13.9 ([2]). Let d ≥ 1 and x ∈ {0, 1, . . . , d}Zd be uniformly recurrent configuration. Let
F = {0,−e1, . . . ,−ed}. Consider the following two statements:

(i) for every nonempty finite connected subset S ⊂ Zd, we have #LS(x) = #(F − S).

(ii) there exists a totally irrational vector α ∈ [0, 1)d and a intercept ρ ∈ [0, 1) such that x = sα,ρ

or x = s′
α,ρ.

Since sα,ρ, s′
α,ρ and cα have the same language when α is totally irrational, we can deduce from

Corollary 13.5 that (ii) implies (i). Is it true that (i) and (ii) are equivalent?

Consider a sequence of totally irrational slopes (αn)n∈N for which both cαn and c′
αn

converge
in the prodiscrete topology. Then (cαn , c

′
αn

)n∈N converges in the asymptotic relation to an étale
limit (c, c′), see [2, Definition 2.8]. It turns out that étale limits preserve both the flip condition
and indistinguishability, and will thus satisfy all of the equivalences stated in Theorem 13.1. An
example of such a limit is illustrated in Figure 13.4.

c c′

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 13.4: An indistinguishable asymptotic pair (c, c′) which satisfies the flip condition obtained by taking
the limit of the Sturmian configurations given by αn = ( 1

n (
√

2− 1), 1
n (
√

3− 1)).

We believe that in fact every indistinguishable asymptotic pair on Zd which satisfies the flip
condition can be obtained through an étale limit as above.

Conjecture 13.10 ([2]). Let d ≥ 1 and x, y ∈ {0, 1, . . . , d}Zd be an indistinguishable asymptotic
pair which satisfies the flip condition. Then there exists a sequence of totally irrational vectors
(αn)n∈N such that (x, y) is the étale limit of the sequence of asymptotic pairs (cαn , c

′
αn

)n∈N.

It was proved that Conjecture 13.10 holds when d = 1, see [3, Theorem B]. Proving it for d > 1 is
harder due to the various ways a sequence (αn)n∈N can converge to some vector α ∈ [0, 1)d leading
to infinitely many étale limits associated to a single vector. When d = 1, there are only two such
ways: from above or from below. Describing combinatorially what happens in these two cases was
sufficient in [3] to prove the result. An analogue combinatorial description of all different behaviors
when d > 1 is still open.
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13 Multidimensional Sturmian configurations

In [3, Theorem C], indistinguishable asymptotic pairs were totally described when d = 1 by
the image under substitutions of characteristic Sturmian sequences. Describing indistinguishable
asymptotic pairs in general when d > 1 (other than those satisfying the flip condition or some affine
version of it) remains an open question.

Question 13.11. Let d ≥ 1 and x, y ∈ {0, 1, . . . , d}Zd be an indistinguishable asymptotic pair.
Does there exists a sequence of totally irrational vectors (αn)n∈N such that (x, y) can be derived
from the étale limit of the sequence of asymptotic pairs (cαn , c

′
αn

)n∈N?

Our current work also leads to another interesting question. In dimension 1, it is known at least
since [215] that a sequence of factor complexity less than or equal to n is eventually periodic. In
two dimensions, it is still an open problem [117, 173] known as Nivat’s conjecture [219] whether a
configuration x for which there are n,m ∈ N with #L(n,m)(x) ≤ nm is periodic or not. Another
question which seems to have been overlooked due to the difficulty of settling Nivat’s conjecture is
to describe the minimal complexity of an aperiodic configuration (trivial stabilizer under the shift
map, that is σn(x) = x only holds for n = 0) which admits a totally irrational vector of symbols
frequencies. When d = 1, we know that such sequences have complexity at least n + 1 and are
realized by Sturmian configurations. However, when d = 2, configurations with rectangular pattern
complexity mn+1 are not uniformly recurrent and do not have a totally irrational vector of symbol
frequencies [103]. As the symbol frequencies of the multidimensional Sturmian configurations cα

and c′
α is α, it follows by Theorem 13.3 and Theorem 13.1 that they provide an upper bound for this

problem, namely, that these sequences can be realized with complexity #(F −S) for every pattern
of connected support S. According to Cassaigne and Moutot (personal communication, January
2023), there exist 2-dimensional configurations with totally irrational vector of symbol frequencies
with pattern complexity strictly less than #(F − S) for infinitely many connected supports S.
Therefore, we ask the following question.

Question 13.12 ([2]). Let d ≥ 1. Let x ∈ {0, 1, . . . , d}Zd be a configuration with trivial stabilizer
and assume that the frequencies of symbols in x exist and form a totally irrational vector. Let
S ⊂ Zd be a nonempty connected finite support. What is the greatest lower bound for the pattern
complexity #LS(x)?

It is known that bispecial factors within the language of a Sturmian sequence of slope α ∈ [0, 1)
are related to the convergents of the continued fraction expansion of α [203]. Since our work extends
the notion of bispecial factors to the setup of multidimensional Sturmian configurations (see Fig-
ure 13.5), it is natural to ask the following question about simultaneous Diophantine approximation
[248].
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Figure 13.5: On the left, an L-shape pattern of support {(1, 0), (2, 0), (3, 0), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)}
is shown. It is bispecial at positions a = (0, 0) and b = (4, 5) because it can be extended in
more than one way at these positions within the language of the configurations x and y shown
in Figure 13.1. Thus b− a = (4, 5) ∈ Vα when α = (

√
2/2,
√

19− 4).
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13.5 Open questions

Question 13.13 ([2]). Let d ≥ 1 and α ∈ [0, 1)d be a totally irrational vector. What is the relation
between the set

Vα = {b− a : there exists w ∈ LS(cα) which is bispecial at positions a, b ∈ Zd}

and simultaneous Diophantine approximations of the vector α?
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Chapter 14

Perspectives

“How and to what extent can a dynamical system be represented by a symbolic one?”

— Adler, [25]

The subject of this thesis lies at the interface of mathematics and theoretical computer science;
more precisely, in the fields of dynamical systems and number theory with close connections to
discrete mathematics and tiling theory. The main objects of study are discrete dynamical systems
given by a (continuous or measurable) map of a space into itself. Hadamard [149] first proposed the
idea of representing the orbit of a point in a dynamical system as a sequence of symbols according
to a partition of the space. Later the pioneering work of Morse and Hedlund [215] gave birth to the
field of symbolic dynamical systems with strong links to number theory (continued fractions
[216], Diophantine approximation [105]) and geometry (geodesic flow on the modular surface [254]).
That was generalized to interval exchange transformations [174] with its relation to Teichmüller
theory [272, 278, 47].

Another famous application of Symbolic Dynamics is the study of hyperbolic automorphisms
and diffeomorphisms of the torus [258, 26, 91] where orbits are coded using a partition recalling
the Markov process property. Symbolic Dynamics in higher dimensions is very different in terms
of decidability [67] and entropy [159] due to the possibility of embedding the computation of any
Turing machine [270] in a two-dimensional tiling. Thus, Zd-actions are intrinsically more complex
than Z-actions. Many important challenging open problems are still open including Pisot conjecture
[28], Nivat’s conjecture [172] and the Markoff injectivity conjecture [27, 240].

Many open questions are raised at the end of many chapters in the current thesis (Section 8.3,
Section 9.3, Section 10.8, Section 11.10, Section 12.4, Section 13.5). In this chapter, we present
additional open questions. These subjects will be proposed to future Ph. D. students.

14.1 Digital geometry and combinatorics

In the last decades, computer imaging has undergone tremendous development in a number of
fields: image analysis and processing, pattern recognition, image synthesis and computer graphics,
computer vision and algorithmic geometry. These fields have contributed to the growth of discrete
geometry, whose varied development is reminiscent of the richness of geometry and topology in
mathematics [269]. Digital geometry is the set of theories developed in computer science for topo-
logical and geometric questions on a finite or countable set of Zd points [178, 109, 120]. These
theories seek analogies with Euclidean geometry in Rd, without the analytical tools.

We know that topology and Euclidean geometry cannot be transported to discrete spaces without
major distortions and a phenomenon of theory multiplication. For example, the existence of a
Jordan theorem in the discrete plane for discrete curves [273] and the recognition of a discrete line
lead to several concepts. Digital geometry must therefore be carefully distinguished from Euclidean
geometry. It addresses fundamental imaging problems based on appropriate mathematical theories,
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leading to robust algorithms and efficient software [96].

Discrete segments in Z2

Introduced in Section 4.2, Christoffel words are the basic building blocks of discrete geometry in
dimension two, as they represent the discrete segments of Z2. Christoffel’s words are related to
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Christoffel word of normal vector a⃗ = (5, 8) with wb⃗ = 00100101, wc⃗ = 00101, b⃗ = (3, 5) and
c⃗ = (2, 3).

.

Farey sequences, the Stern-Brocot tree (see Fig. 14.1) and continued fractions via their standard
factorization. Indeed, a Christoffel word wa⃗ of normal vector a⃗ factorizes into a unique product
w

b⃗
·wc⃗ such that w

b⃗
and wc⃗ are two Christoffel words of normal vector b⃗ and c⃗ respectively. This is

the standard factorization of Christoffel words introduced by Borel and Laubie [89] (see Fig. 14.1).
Christoffel words are also used to segment discrete curves. For example, an optimal algorithm [97]
for deciding the convexity of a discrete curve is based on the recognition of Lyndon words and
Christoffel words.

A Lyndon word is a word that is lexicographically smaller than all its circular permutations. For
example, the word atoire is a Lyndon word, because its circular permutations are:

{atoire, toirea, oireat, ireato, reatoi, eatoir}.

It is known [201, Theorem 5.1.1] that any non-empty word w admits a unique factorization as a
lexicographically decreasing Lyndon word sequence:

w = ln1
1 ln2

2 · · · lnk
k , l1 > l2 > · · · > lk,

where ni ≥ 1 and li is a Lyndon word, for all i such that 1 ≤ i ≤ k. For example, we check that
the unique Lyndon factorization of the word combinatory is: (com)(bin)(atoire). The following
result linking Lyndon factorization and the convexity property of a path has provided an important
link between word combinatorics and digital geometry (see Fig. 14.2).

Theorem 14.1 ([97]). A word w ∈ {0, 1}∗ describes a convex path if and only if its unique Lyndon
factorization ln1

1 ln2
2 · · · lnk

k is such that all li are Christoffel words.

An open question [234] is:

Question 14.2. Find a higher-dimensional equivalent to Theorem 14.1 that would allow a discrete
convex surface to be segmented.
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1
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1

0 1
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0

Figure 14.2: The Lyndon factorization of the discrete convex curve v = 1011010100010 is v = (1)1 · (011)1 ·
(01)2 · (0001)1 · (0)1 where 0, 011, 01, 0001 and 0 are words from Christoffel [97].

To answer this question, it’s natural to look for an equivalent of Christoffel’s words that would
allow us to generalize the concepts we know in Z2 to a higher dimension. With Christophe
Reutenauer, we generalized Christoffel’s words to dimension d ≥ 3 [14]. The object we have
defined is not a word, but rather a Christoffel graph associated with a normal vector.

The concatenation of Christoffel graphs, whose definition is not as simple as for words, still needs
to be better described. Experiments suggest that the standard factorization generalizes to higher
dimensions (see Fig.14.3, as well as recent joint results with Tristan Roussillon [15]). However, this
factorization is not unique and requires further study.
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Figure 14.3: A factorization of Christoffel’s graph H(2,3,5).

Question 14.3. Describe the factorization of Christoffel graphs.

As Christoffel’s words are directly related to continued fractions via their standard factorization,
this project have applications in number theory and discrete dynamical systems. Indeed, the
multidimensional continued fraction algorithm behind Christoffel’s graphs is not known. Higher-
dimensional generalizations of Farey sequences have already been considered, demonstrating the
difficulties that come with them. Christoffel graphs offer a promising new approach to this question.

Question 14.4. Generalize the Stern-Brocot tree to higher dimensions, based on Christoffel graphs.

14.2 Cut and project schemes and subshifts of finite type

Jeandel-Rao tilings are very interesting and were rich enough to be the subject of many articles [7,
10, 8, 9, 13]. However, it remains a single example. A step forward was the discovery of the family
of metallic mean Wang tiles which extend the sets of aperiodic Wang tiles beyond the omnipresent
golden ratio [22, 23]. However, this list of subshifts of finite type described by cut and project
schemes remains incomplete. Can we characterize them all?

Question 14.5. Characterize the family of subshifts of finite type in AZd that are described by
(Euclidean) cut and project schemes.
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Figure 14.4: Combinatorial properties of cut and project schemes are studied mostly when the physical
dimension is 2 and when the codimension is less than 2 or 3. It remains a large territory to
explore.

A simpler question might be to restrict it 2 dimensions and 4-to-2 cut and project schemes.
Question 14.6. Characterize the family of subshifts of finite type in AZ2 that are described by
(Euclidean) 4-to-2 cut and project schemes. Are they always self-similar or substitutive?

On this subject, many other more precise open questions are listed in Part IV in Section 11.10 and
Section 12.4. Following the work on Jeandel-Rao tilings and metallic mean Wang tiles, there are
several entry points to study these questions, depending on the interest of a future Ph. D. Student:

• existing sets of aperiodic Wang tiles (among which are the other candidates listed by Jeandel
and Rao [163], the encoding of Penrose tilings into Wang tiles [148], the golden octagonal
[56], etc.)

• Zd-actions on Rd/Zd coded by other polyhedral partitions (this is how metallic mean Wang
tiles were discovered),

• automata theory and numeration systems for Zd [17, 18, 16],

• d-dimensional substitutions and d-dimensional self-similar subshifts.

• cut and project schemes and their combinatorial (linear repetitivity [155]) and numerical
properties [154],

• geometrical coincidences in the cut and project scheme, Grassmann coordinates [57] and
matroid theory.

This project has already started in the community. Some preliminary results were obtained by
other authors recently about potential polygonal partition coding other Wang shifts [160]. Also, a
polygonal partition of a rectangular fundamental domain of height φ+ 4 was discovered for one of
the candidates listed by Jeandel and Rao in a memoir of Thompson [267], see Section 11.9.
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14.3 Other extensions of Sturmian systems
In this document, we have listed open questions about Sturmian sequences within 2-to-1 cut and
project schemes (Section 8.3), about extensions of 3-to-1 cut and project schemes with good com-
binatorial properties (Section 10.8) and about multidimensional Sturmian configurations and codi-
mension 1 cut and project schemes (Section 13.5).

Nevertheless, in terms of the dimension and codimensions, much of the combinatorial and numer-
ical properties cut and project schemes remain to be explored, see Figure 14.4. When the dimension
and codimension is large (≥ 3), can subshifts defined by cut and project schemes be characterized
by their pattern complexity? as subshifts of finite type? as Wang shifts?

14.4 A question of Terence Tao

Let d ≥ 1 be an integer. We say that a set S ⊂ Zd tiles the space, if there exists a set of translations
translations T ⊂ Zd such that Zd = S ⊕ T (here the notation S ⊕ T means that {S + t|t ∈ T}
forms a partition of Zd). A set of translations T ⊂ Zd is said to be periodic if there exists a vector
v ∈ Zd \ {0} such that T = T + v. A set of translations T ⊂ Zd is said to be strongly periodic if it
is the finite union of cosets of a finite-index subgroup of Zd.

In an article published in the summer of 2024 in Annals of Mathematics [147], Rachel Greenfeld
and Terence Tao have shown that in a (very large) dimension d ≥ 1, there exists a finite subset
S ⊂ Zd that is (weakly) aperiodic, i.e.:

• S tiles the space: there is a set of translations T ⊂ Zd such that Zd = S ⊕ T ;

• S never tiles the space in a strongly periodic way: for any set of translations T ⊂ Zd such
that Zd = S ⊕ T , then T is not strongly periodic.

This answered an open question by Lagarias and Wang [188]. The existence of a strongly aperiodic
subset remains open.

A question asked at the end of Tao and Greenfeld’s article seeks to make a connection with the
substitutive structure of aperiodic Jeandel-Rao tilings:

“Following [10], it would be of interest to study the tilings in Tile(F ;Z2×G0) that have
a substitution structure. Question 10.9. Can any of the tilings by our aperiodic tile be
interpreted as a substitution tiling?
The 2-adic nature of the Sudoku solutions suggests a positive answer.”

Indeed, the tools used by Tao and Greenfeld in their construction use what they themselves call
“tetris move” and sheers [147]. In the study of Jeandel-Rao tilings, it was also needed to describe
two very similar operations, which we formalized with substitutions and symbolic dynamics.

It is possible that we can reinterpret their approach in the symbolic dynamic systems terminology.
The aim here would be to simplify the proof and find a smaller-dimensional aperiodic set. We know
that none exists in dimension 2 [88], but there could exist some in dimensions as low as 3.

Question 14.7. Find an aperiodic subset S ⊆ Zd in dimension d ≥ 3 smaller than the one in very
large dimension one proposed in [147], and if possible in dimension d = 3.
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