Exercice 1. Apprendre quelques raccourcis clavier de Jupyter. Consulter Help > Keyboard Shortcuts au besoin.

- Qu'est-ce qui caractérise le mode édition (3 réponses), le mode commande (3 réponses)? **Solution :** Le cadre est vert et non gris, le curseur clignote et il y a un petit crayon en haut à droite du notebook.
- Quelle touche du clavier permet de passer du mode édition au mode commande et du mode commande au mode édition? **Solution :** Enter/Esc.
- En mode commande, les fléches ↑ et ↓ permettent de sélectionner la cellule au-dessus et au-dessous respectivement. Quelles touches alphabétiques du clavier permettent de faire la même chose. Pourquoi ce sont ces touches-là? **Solution :** j et k (en mode commande). Les touches sont les plus accessibles du clavier.
- En mode commande, quelle touche permet d'ajouter une nouvelle cellule au-dessus de la cellule sélectionnée? au-dessous? Pourquoi ce sont ces touches-là? **Solution :** A (above) et B (below).
- En mode commande, quelles touches permettent de couper, de copier et de coller une cellule? Pourquoi ce sont ces touches-là? **Solution :** C et V (similairement à Ctrl-C, Ctrl-V dans un éditeur de texte).
- En mode édition, quelle touche permet de compléter les mots ou le code que l'on écrit ? **Solution :** La touche de tabulation $(\rightarrow |)$

Exercices du Chapitre 4 : Calcul symbolique

Pour les exercices suivants, il sera nécessaire d'importer les fonctions et symboles suivants :

from sympy import expand, factor, simplify, sin, tan, sec, radsimp, ratsimp, apart, collect from sympy.abc import a, b, c, d, n, x, y, z

Exercice 2. Développer $(x+y)^2(x-y)(x^2+y)$.

Solution: $x^5 + x^4y - x^3y^2 + x^3y - x^2y^3 + x^2y^2 - xy^3 - y^4$

Exercice 3. Calculer le coefficient de $x^3y^7z^2$ dans l'expression $(x+y+z)^{12}$.

Solution: 7920

Exercice 4. Simplifier $\sec(x)^2 - 1$.

Solution: $\tan^2(x)$

Exercise 5. Simplifier $\frac{\sqrt{a} - \sqrt{b}}{\sqrt{a} + \sqrt{b}} + \frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} - \sqrt{b}}$.

Solution: $\frac{2a+2b}{a-b}$

Exercice 6. Factoriser le polynôme $25x^5 + 175x^4 - 40x^3 - 280x^2 + 16x + 112$.

Solution: $(x+7)(5x^2-4)^2$

Exercice 7. Montrer que $\cos^3(x) + \sin^3(x)$ peut s'écrire sous la forme

$$(\cos(x) + \sin(x))(1 - \frac{1}{2}\sin(2x)).$$

Solution: La différence entre les deux vaut 0.

Exercice 8. Rationaliser le dénominateur de $\frac{2+\sqrt{7}}{3-\sqrt{13}}$.

Solution: $\frac{1}{4} \left(-\sqrt{91} - 3\sqrt{7} - 2\sqrt{13} - 6 \right)$

Exercice 9. Calculer le coefficient de x^2 dans l'expression (x-a)(x-b)(x-c)(x-d).

Solution: (ab + ac + ad + bc + bd + cd)

Exercice 10. Décomposer $\frac{x^3 - 10x^2 + 40x - 47}{x^4 - 9x^3 + 17x^2 + 33x - 90}$ en somme de fractions rationnelles.

Solution: $\frac{1}{x+2} - \frac{1}{x-3} - \frac{1}{(x-3)^2} + \frac{1}{x-5}$

Exercice 11. Écrire l'expression $\frac{5}{x+3} + \frac{3}{x-5} - \frac{8}{x}$ sous un dénominateur commun.

Solution: $\frac{120}{x^3-2x^2-15x}$

Exercice 12. Factoriser le polynôme x^k-1 en produit de polynômes irréductibles sur \mathbb{Q} lorsque k=2,3,4,5,6,7. Pour quelles valeurs entières de $k\geq 2$ est-ce que $\frac{x^k-1}{x-1}$ est-il égal à un polynôme irréductible sur \mathbb{Q} ?

Solution : On obtient les produits $[(x-1)(x+1), (x-1)(x^2+x+1), (x-1)(x+1)(x^2+1), (x-1)(x^4+x^3+x^2+x+1), (x-1)(x+1)(x^2-x+1)(x^2+x+1), (x-1)(x^6+x^5+x^4+x^3+x^2+x+1)]$. On en déduit que $\frac{x^k-1}{x-1}$ est un polynôme irréductible sur \mathbb{Q} pour k un nombre premier.

Exercice 13. Trouver l'expression symbolique qui calcule le volume d'un cube de côté 2a auquel on a soustrait le volume d'une boule de rayon a et de même centre.

Solution: $a^2(-\pi a + 4)$

Exercice 14. Soit un polygone régulier à n côtés dont la longueur des côtés est a. Définir dans Sympy l'expression symbolique qui donne l'apothème 1 en fonction de n et de a.

Solution: $\frac{a}{2\tan\left(\frac{\pi}{n}\right)}$

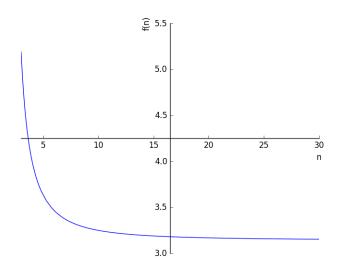
Exercice 15. En procédant par substitution sur l'expression symbolique obtenue à l'exercice précédent, calculer l'apothème d'un hexagone régulier de côté 3 cm et l'apothème d'un heptadécagone régulier de côté 89 km.

Solution: $\frac{3\sqrt{3}}{2} \simeq 2.6 \text{ cm et } \frac{89}{2\tan\left(\frac{\pi}{70}\right)} \simeq 991 \text{ km}$

Exercice 16. Trouver l'expression R(n) qui donne le rapport entre le périmètre d'un polygone régulier à n côté et le double de son apothème. Évaluer R(n) pour des valeurs de plus en plus grandes de $n \geq 3$. En déduire le comportement de R(n) lorsque n tend vers l'infini. Facultatif : En utilisant la commande plot décrite dans le début du chapitre 6, tracer le graphique de cette expression en fonction de n pour $n \in [3, 30]$.

^{1.} L'apothème est la longueur de la perpendiculaire menée du centre vers un côté d'un polygone régulier.

Solution: $R(n) = n \tan \left(\frac{\pi}{n}\right)$. On constate que R(n) semble tendre vers π .



Exercices du Chapitre 5 : Résolution d'équations (partie 1)

Pour les exercices suivants, il sera nécessaire d'importer les fonctions et symboles suivants :

from sympy import solve, roots, Eq
from sympy.abc import a,b,x,y,w,z

Exercice 17. Résoudre l'équation $x^4 - 4x^3 + 2x^2 - x = 0$.

Solution:
$$\begin{bmatrix} 0, & \frac{4}{3} + \left(-\frac{1}{2} - \frac{\sqrt{3}i}{2}\right) \sqrt[3]{\frac{\sqrt{321}}{18} + \frac{83}{54}} + \frac{10}{9\left(-\frac{1}{2} - \frac{\sqrt{3}i}{2}\right) \sqrt[3]{\frac{\sqrt{321}}{18} + \frac{83}{54}}}, \\ \frac{4}{3} + \frac{10}{9\left(-\frac{1}{2} + \frac{\sqrt{3}i}{2}\right) \sqrt[3]{\frac{\sqrt{321}}{18} + \frac{83}{54}}} + \left(-\frac{1}{2} + \frac{\sqrt{3}i}{2}\right) \sqrt[3]{\frac{\sqrt{321}}{18} + \frac{83}{54}}, \quad \frac{10}{9\sqrt[3]{\frac{\sqrt{321}}{18} + \frac{83}{54}}} + \frac{4}{3} + \sqrt[3]{\frac{\sqrt{321}}{18} + \frac{83}{54}}$$

Exercice 18. Résoudre le système d'équations x + y = 4, xy = 3.

Solution: $[\{x:1, y:3\}, \{x:3, y:1\}]$

Exercice 19. Résoudre le système d'équations x + y + z = 2, x - y + w = 6, x + y - z = 34, x + y - 4w = 82.

Solution: $\{w: -16, x: 20, y: -2, z: -16\}$

Exercice 20. Trouver les racines de $x^3 + 2x^2 + 8$.

Solution:
$$\begin{cases} -\frac{2}{3} - \frac{2}{9\left(-\frac{1}{2} - \frac{\sqrt{3}i}{2}\right)\sqrt[3]{\frac{\sqrt{93}}{18} + \frac{29}{54}}} - 2\left(-\frac{1}{2} - \frac{\sqrt{3}i}{2}\right)\sqrt[3]{\frac{\sqrt{93}}{18} + \frac{29}{54}}, \\ -\frac{2}{3} - 2\left(-\frac{1}{2} + \frac{\sqrt{3}i}{2}\right)\sqrt[3]{\frac{\sqrt{93}}{18} + \frac{29}{54}} - \frac{2}{9\left(-\frac{1}{2} + \frac{\sqrt{3}i}{2}\right)\sqrt[3]{\frac{\sqrt{93}}{18} + \frac{29}{54}}}, \quad -2\sqrt[3]{\frac{\sqrt{93}}{18} + \frac{29}{54}} - \frac{2}{3} - \frac{2}{9\sqrt[3]{\frac{\sqrt{93}}{18} + \frac{29}{54}}} \end{cases}$$

Exercice 21. Trouver l'équation de la droite y = ax + b qui passe par les points (8, 13), (5, 37).

Solution: y = -8x + 77