Indistinguishable asymptotic pairs and multidimensional Sturmian configurations

arXiv:2204.06413

Sebastián Barbieri*, Sébastien Labbé†

* Universidad de Santiago de Chile † CNRS, LaBRI, Université de Bordeaux

GDMM2022 Journées de Géométrie Discrète et Morphologie Mathématique LaBRI, Talence (France) 22 novembre 2022

Contexte : géométrie discrète 👄 combinatoire

E.g., "digitally convex = Lyndon + Christoffel"

Theorem (Brlek, Lachaud, Provençal, Reutenauer, 2009)

A word $w \in \{0, 1\}^*$ is **NW**-convex if and only if its unique Lyndon factorization $l_1^{n_1} l_2^{n_2} \cdots l_k^{n_k}$ is such that all l_i are Christoffel words.

sage: w = Word('1011010100010')
sage: w.lyndon_factorization()
(1, 011, 01, 01, 0001, 0)

S. Brlek, J.-O. Lachaud, X. Provençal, and C. Reutenauer. Lyndon + Christoffel = digitally convex. Pattern Recognition, 42(10) :2239–2246, October 2009.

Outline

Indistinguishable asymptotic pairs of configurations

Outline

Indistinguishable asymptotic pairs of configurations

Sturmian words (Morse, Hedlund, 1940)

Let $\alpha \in [0, 1] \setminus \mathbb{Q}$ and $c_{\alpha}, c'_{\alpha} : \mathbb{Z} \to \{0, 1\}$ be the configurations

 $c_{\alpha}(n) = \lfloor \alpha(n+1) \rfloor - \lfloor \alpha n \rfloor$ (lower characteristic Sturmian word) $c'_{\alpha}(n) = \lceil \alpha(n+1) \rceil - \lceil \alpha n \rceil$ (upper characteristic Sturmian word)

Pattern complexity

C_{α} :	$= \cdots 101001010010$ 1.0 0100	10100101 · · ·
c'_{α} :	=···101001010010 0.1 0100)10100101 · · ·
п	$\mathcal{L}_{n}(c_{lpha})$	$\#\mathcal{L}_{\textit{n}}(\textit{c}_{\!lpha})$
0	ε	1
1	0,1	2
2	00,01,10	3
3	001,010,100,101	4
4	0010,0100,0101,1001,101	0 5

Theorem (Morse, Hedlund, 1940 & Coven, Hedlund, 1970) Let $x \in \{0, 1\}^{\mathbb{Z}}$ be recurrent sequence. The sequence x has complexity $\#\mathcal{L}_n(c_\alpha) = n + 1$ if and only if

 $x = c_{\alpha}$ is a Sturmian seq. for some irrational slope $\alpha \in [0, 1] \setminus \mathbb{Q}$.

Discrete planes

A discrete plane of normal vector $v \in \mathbb{R}^3$, intercept μ and width ω is the subset

$$\{ \boldsymbol{p} \in \mathbb{Z}^3 \mid \boldsymbol{0} \leq \boldsymbol{p} \cdot \boldsymbol{v} + \mu < \omega \} \subset \mathbb{Z}^3.$$

For example, with $\mu = 0$ and $\omega = \|v\|_1/2$, we get :

P. Arnoux, V. Berthé, and S. Ito. Discrete planes, Z²-actions, Jacobi-Perron algorithm and substitutions. Annales de l'Institut Fourier, 52(2) :305–349, 2002.
 D. Jamet and J.-L. Toutant, On the connectedness of rational arithmetic discrete hyperplanes, LNCS 4245, 223–234, 2006.

Encoding upper and lower discrete planes

When $\mu = 0$ and $\omega = \|v\|_1$, we get the vertices of the surface of a **standard** discrete plane of normal vector $v \in \mathbb{R}^3$:

 $\{p \in \mathbb{Z}^3 \mid 0$

Encoding : $\mathbb{Z}^2 \to \{0,1,2\}$

Damien Jamet, Coding Stepped Planes and Surfaces by Two-Dimensional Sequences over a Three-Letter Alphabet 05047, 2005, pp.21

Encoding upper and lower discrete planes

When $\mu = 0$ and $\omega = \|v\|_1$, we get the vertices of the surface of a **standard** discrete plane of normal vector $v \in \mathbb{R}^3$:

 $\{\boldsymbol{p} \in \mathbb{Z}^3 \mid \boldsymbol{0} < \boldsymbol{p} \cdot \boldsymbol{v} \leq \|\boldsymbol{v}\|_1\} \subset \mathbb{Z}^3 \qquad \text{Encoding} : \mathbb{Z}^2 \to \{\boldsymbol{0}, 1, 2\}$

Damien Jamet, Coding Stepped Planes and Surfaces by Two-Dimensional Sequences over a Three-Letter Alphabet 05047, 2005, pp.21

d-dimensional Sturmian configurations

Let $\alpha \in [0, 1)^d$ be a totally irrational vector, that is,

$$\mathbf{n} \in \mathbb{Z}^d, \, \mathbf{n} \cdot \mathbf{\alpha} \in \mathbb{Z} \implies \mathbf{n} = \mathbf{0}.$$

Definition

The lower and upper characteristic *d*-dimensional Sturmian configurations with slope α are respectively :

$$c_{\alpha}: \mathbb{Z}^{d} \rightarrow \{0, 1, \dots, d\}$$

$$n \mapsto \sum_{i=1}^{d} (\lfloor \alpha_{i} + n \cdot \alpha \rfloor - \lfloor n \cdot \alpha \rfloor)$$

$$c_{\alpha}': \mathbb{Z}^{d} \rightarrow \{0, 1, \dots, d\}$$

$$n \mapsto \sum_{i=1}^{d} (\lceil \alpha_{i} + n \cdot \alpha \rceil - \lceil n \cdot \alpha \rceil).$$

Example

With $\alpha = (\alpha_1, \alpha_2) = (\sqrt{2}/2, \sqrt{19} - 4)$: $C_{\alpha}: \mathbb{Z}^2 \to \{0, 1, 2\}$ $c'_{\alpha}: \mathbb{Z}^2 \rightarrow \{0, 1, 2\}$ 2 1 0 2 1 0 2 2 1 0 2 1 0 2 1 0 2 0 0 2 1 1 0 2 1 0 2 1 0 0 2 1 1 0 2 1 0 2 1 0 2 1 0 2 2 1 0 2 1 0 2 2 1 0 2 2 1 0 2 1 0 2 1 0 2 1 0 2 2 1 0 2 1 0 2 1 1 0 2 1 0 2 1 2 1 0 2 2 1 0 2 1 0 0 2 1 0 2 1 1 0 2 0 1 0 2 1 0 2 1 0 2 2 1 0 2 0 2 1 0 2 2 1 0 2 0 2 1 0 2 1 1 0 2 1 1 0 2 1 0 2 1 1 0 2 2 2 1 0 2 2 0 0 2 0 2 0 2 0

is the encoding of a discrete plane of normal vector

$$(1 - \alpha_1, \alpha_1 - \alpha_2, \alpha_2) \approx (0.293, 0.348, 0.359).$$

Question

Can we characterize *d*-dimensional Sturmian configurations by their pattern complexity?

Outline

Indistinguishable asymptotic pairs of configurations

Configurations

A map $x : \mathbb{Z}^d \to \Sigma$ is called a **configuration**.

 $x: \mathbb{Z}^2 \to \{0, 1, 2\}$ 0 1 0 0 0 0 1 2 0 (both restricted to $[-5, 5] \times [-4, 3]$)

The shift action $\mathbb{Z}^d \stackrel{\sigma}{\hookrightarrow} \Sigma^{\mathbb{Z}^d}$ is given by the map $\sigma \colon \mathbb{Z}^d \times \Sigma^{\mathbb{Z}^d} \to \Sigma^{\mathbb{Z}^d}$ where

 $\sigma^{u}(x)_{v} := \sigma(u, x)_{v} = x_{u+v}$ for every $u, v \in \mathbb{Z}^{d}, x \in \Sigma^{\mathbb{Z}^{d}}$.

 $\sigma^{(4,1)}x$

Asymptotic pair

Two configurations $x, y \in \Sigma^{\mathbb{Z}^d}$ are **asymptotic** if they differ in finitely many sites of \mathbb{Z}^d .

The set $F = \{n \in \mathbb{Z}^d : x_n \neq y_n\}$ is called the **difference set** of (x, y).

Language of patterns

For finite subset $S \subset \mathbb{Z}^d$, an function $p: S \to \Sigma$ is called a **pattern** and the set *S* is its **support**. We denote it $p \in \Sigma^S$.

 $x:\mathbb{Z}^2 o \{0,1,2\}$

The language of patterns of support $S = \{\mathbf{0}, \mathbf{e}_1, 2\mathbf{e}_1, \mathbf{e}_2\}$ in x is

Occurrences within asymptotic pairs

The occurrences of a pattern $p \in \Sigma^{S}$ in a configuration $x \in \Sigma^{\mathbb{Z}^{d}}$ is $occ_{p}(x) := \{ \boldsymbol{n} \in \mathbb{Z}^{d} : \sigma^{\boldsymbol{n}}(x) |_{S} = p \}.$ $x : \mathbb{Z}^{2} \to \{0, 1, 2\}$ $y : \mathbb{Z}^{2} \to \{0, 1, 2\}$

1 0 2 2 1 0 2 1 0 2 1 1 0 2 2 1 0 2 1 0 2 1 0 0 2 1 2 0 2 0 2 2 1 0 2 2 1 0 2 2 1 0 2 1 0 2 0 2 1 0 2 1 0 2 1 1 0 2 1 0 2 1 1 0 2 1 0 2 1 0 2 2 1 0 2 0 2 1 0 2 2 1 0 2 1 0 4 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 1 0 2 1 0 2 1 1 0 2 1 2 1 0 2 1 0 2 1 0 2 1 0 2 2 1 0 0 2 1 0 2 1 0 2 2 1 0 0 2 1

The occurrences of the pattern $p = \begin{bmatrix} 1 \\ 0 & 2 \end{bmatrix}$ in *x* and *y* are

$$occ_{\rho}(x) = \{(-5,2), (1,1), (3,-3), \ldots\},\ occ_{\rho}(y) = \{(-5,2), (1,1), (3,-3), \ldots\},\$$

Occurrences within asymptotic pairs

The occurrences of a pattern $p \in \Sigma^S$ in a configuration $x \in \Sigma^{\mathbb{Z}^d}$ is $\operatorname{occ}_p(x) := \{ \boldsymbol{n} \in \mathbb{Z}^d : \sigma^{\boldsymbol{n}}(x) |_S = p \}.$

 $x:\mathbb{Z}^2 \to \{0,1,2\}$

 $\boldsymbol{y}:\mathbb{Z}^2\to\{\boldsymbol{0},\boldsymbol{1},\boldsymbol{2}\}$

1 0 2 2 1 0 2 1 0 2 1 1 0 2 2 1 0 2 1 0 2 1 0 0 2 1 2 0 2 0 2 0 2 2 1 0 2 1 0 2 2 1 0 2 2 1 0 2 1 0 2 1 0 2 1 1 0 2 1 0 2 1 1 0 2 1 0 2 1 0 2 2 1 0 2 0 2 1 0 2 2 1 0 2 1 0 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 1 0 2 1 0 2 1 1 0 2 1 2 1 0 2 1 0 2 1 0 2 1 0 2 2 1 0 0 2 1 0 2 1 0 2 2 1 0 0 2 1

The occurrences of the pattern p =

1 in *x* and *y* are

$$\operatorname{occ}_{\rho}(x) \setminus \operatorname{occ}_{\rho}(y) = \{(0,0)\},\ \operatorname{occ}_{\rho}(y) \setminus \operatorname{occ}_{\rho}(x) = \{(-2,-1)\}.$$

Indistinguishable asymptotic pair

Let $p \in \Sigma^S$ is a pattern of finite support $S \subset \mathbb{Z}^d$.

If $x, y \in \Sigma^{\mathbb{Z}^d}$ are asymptotic configurations with difference set F, then

$$\operatorname{occ}_{\rho}(x) \setminus \operatorname{occ}_{\rho}(y) = \operatorname{occ}_{\rho}(x) \cap (F - S)$$

and in particular it is finite.

Definition

We say that (x, y) is an **indistinguishable asymptotic pair** if (x, y) is asymptotic and the following equality holds

 $\# (\operatorname{occ}_{\rho}(x) \setminus \operatorname{occ}_{\rho}(y)) = \# (\operatorname{occ}_{\rho}(y) \setminus \operatorname{occ}_{\rho}(x))$

for every pattern *p* of finite support.

Not all asymptotic pair is indistinguishable

 $x: \mathbb{Z}^2 \to \{0, 1, 2\}$ $y: \mathbb{Z}^2 \to \{0, 1, 2\}$ 0 The occurrences of the pattern p =in x and y are 2 $\operatorname{occ}_{p}(x) = \{(-1, -1)\},\$ $\operatorname{occ}_{\mathcal{D}}(y) = \emptyset$, $\operatorname{occ}_{\rho}(x) \setminus \operatorname{occ}_{\rho}(y) = \{(-1, -1)\},\$ $\operatorname{occ}_{\mathcal{D}}(y) \setminus \operatorname{occ}_{\mathcal{D}}(x) = \emptyset.$

Initial question

In Fall 2019, Sebastian Barbieri asked :

Question

Is there any non trivial pair $x, y \in \Sigma^{\mathbb{Z}^d}$ of indistinguishable asymptotic configurations?

A trivial pair refers to cases like (x, x) and $(x, \sigma^n(x))$ where $n \in \mathbb{Z}^d$.

S. Barbieri, R. Gómez, B. Marcus, T. Meyerovitch, and S. Taati. Gibbsian representations of continuous specifications : the theorems of Kozlov and Sullivan revisited. Communications in Mathematical Physics, 382(2) :1111–1164, 2021.

Outline

Indistinguishable asymptotic pairs of configurations

When d = 1

 $c_{\alpha} = \cdots 101001010010 1.0 010010100101 \cdots$

 $C'_{\alpha} = \cdots 101001010010$ 0.1 010010100101 \cdots

Theorem (Barbieri, L, Starosta, 2021)

Let $x, y \in \{0, 1\}^{\mathbb{Z}}$ and assume that x is **recurrent**. The pair (x, y) is an **indistinguishable asymptotic pair** with difference set $F = \{-1, 0\}$ such that $x_{-1}x_0 = 10$ and $y_{-1}y_0 = 01$

if and only if

there exists $\alpha \in [0, 1] \setminus \mathbb{Q}$ such that $x = c_{\alpha}$ and $y = c'_{\alpha}$ are the lower and upper characteristic Sturmian words of slope α .

Barbieri, L., Starosta, A characterization of Sturmian sequences by indistinguishable asymptotic pairs, European Journal of Combinatorics **95** (2021) 103318, doi:10.1016/j.ejc.2021.103318

When d = 1 : without recurrence hypothesis on x

Theorem (Barbieri, L, Starosta, 2021)

Let $x, y \in \{0, 1\}^{\mathbb{Z}}$. The pair (x, y) is an **indistinguishable asymptotic pair** with difference set $F = \{-1, 0\}$ such that $x_{-1}x_0 = 10$ and $y_{-1}y_0 = 01$

if and only if

there exists a monotone sequence $(\alpha_n)_{n \in \mathbb{N}}$ with $\alpha_n \in [0, 1] \setminus \mathbb{Q}$ s.t. $x = \lim_{n \to \infty} c_{\alpha_n}$ and $y = \lim_{n \to \infty} c'_{\alpha_n}$ are the limits of characteristic Sturmian words of slope α_n .

Moreover, indistinguishable asymptotic pairs over \mathbb{Z} for any finite difference set *F* are described in terms of derived sequences.

Barbieri, L., Starosta, A characterization of Sturmian sequences by indistinguishable asymptotic pairs, European Journal of Combinatorics **95** (2021) 103318, doi:10.1016/j.ejc.2021.103318

When $d \ge 1$

Proposition (Barbieri, L., 2022)

Let $d \ge 1$. Let $\alpha \in [0, 1)^d$ be a totally irrational vector. The lower and upper characteristic *d*-dimensional Sturmian configurations $(c_{\alpha}, c'_{\alpha})$ with slope α is an indistinguishable asymptotic pair.

	a pattern in x						sai	me	ра	tter	'n i	n <i>y</i>	-		a	i pa	atte	rn	in 2	·		same pattern in y						
0	2	2	1	0	2		0	2	2	1	0	2	÷.	÷	0	2	2	1	0	2		0	2	2	1	0	2	
2	1	1	0	2	1		2	1	0	2	2	1	÷	÷	2	1	1	0	2	1		2	1	0	2	2	1	
1	0	2	2	1	0	11	1	0	2	1	1	0	ł	i.	1	0	2	2	1	0	11	1	0	2	1	1	0	
0	2	1	0	2	2		0	2	1	0	2	2		1	0	2	1	0	2	2		0	2	1	0	2	2	
0	2	2	1	0	2		0	2	2	1	0	2	ł		0	2	2	1	0	2		0	2	2	1	0	2	
2	1	1	0	2	1		2	1	0	2	2	1	÷.	÷	2	1	1	0	2	1		2	1	0	2	2	1	
1	0	2	2	1	0	11	1	0	2	1	1	0	i.	÷.	1	0	2	2	1	0	i i	1	0	2	1	1	0	
0	2	1	0	2	2		0	2	1	0	2	2	÷	÷	0	2	1	0	2	2		0	2	1	0	2	2	
0	2	2	1	0	2	1	0	2	2	1	0	2	1	-	0	2	2	1	0	2		0	2	2	1	0	2	
2	1	1	0	2	1	11	2	1	0	2	2	1	ł	i.	2	1	1	0	2	1	1 i	2	1	0	2	2	1	
1	0	2	2	1	0		1	0	2	1	1	0	i.		1	0	2	2	1	0		1	0	2	1	1	0	
0	2	1	0	2	2		0	2	1	0	2	2	ł		0	2	1	0	2	2		0	2	1	0	2	2	
0	2	2	1	0	2		0	2	2	1	0	2	ł	1	0	2	2	1	0	2		0	2	2	1	0	2	
2	1	1	0	2	1		2	1	0	2	2	1			2	1	1	0	2	1		2	1	0	2	2	1	
1	0	2	2	1	0	11	1	0	2	1	1	0	ł	i.	1	0	2	2	1	0	11	1	0	2	1	1	0	
0	2	1	0	2	2		0	2	1	0	2	2	÷		0	2	1	0	2	2		0	2	1	0	2	2	

When $d \ge 1$

Proposition (Barbieri, L., 2022)

Let $d \ge 1$. Let $\alpha \in [0,1)^d$ be a totally irrational vector. The lower and upper characteristic *d*-dimensional Sturmian configurations $(c_{\alpha}, c'_{\alpha})$ with slope α is an indistinguishable asymptotic pair.

Question

What about the reciprocal?

Flip condition

Definition

An asymptotic pair $x, y \in \{0, 1, ..., d\}^{\mathbb{Z}^d}$ satisfies the flip condition if

- the difference set of x and y is $F = \{\mathbf{0}, -\mathbf{e}_1, \dots, -\mathbf{e}_d\},\$
- **2** the restriction $x|_F$ is a **bijection** $F \to \{0, 1, \ldots, d\}$,

3 the map defined by x_n → y_n for every n ∈ F is a cyclic permutation on the alphabet {0, 1, ..., d}.
 Without lost of generality, we assume that x₀ = 0 and

 $y_n = x_n - 1 \mod (d+1)$ for every $n \in F$.

$\boldsymbol{X}:\mathbb{Z}^2\to\{0,1,2\}$							$\boldsymbol{y}:\mathbb{Z}^2\to\{\boldsymbol{0},\boldsymbol{1},\boldsymbol{2}\}$														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	(
0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	(
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(

Flip condition

The flip condition may be interpreted as the **geometrical flip** of the faces of a hypercube at the origin of a **discrete hyperplane** :

T. Jolivet. Combinatorics of Pisot Substitutions. PhD Thesis, 2013.
 Damien Jamet, Coding Stepped Planes and Surfaces by Two-Dimensional Sequences over a Three-Letter Alphabet 05047, 2005, pp.21

Theorem B

Theorem B (Barbieri, L., 2022)

Let $d \ge 1$ and $x, y \in \{0, 1, ..., d\}^{\mathbb{Z}^d}$ s.t. x is uniformly recurrent. The pair (x, y) is an indistinguishable asymptotic pair satisfying the flip condition

if and only if

there exists a **totally irrational vector** $\alpha \in [0,1)^d$ such that $x = c_{\alpha}$ and $y = c'_{\alpha}$ are the lower and upper **characteristic** *d*-dimensional Sturmian configurations with slope α .

(Theorem B depends on Theorem A)

Theorem A

Theorem A (Barbieri, L., 2022)

Let $d \ge 1$ and $x, y \in \{0, 1, ..., d\}^{\mathbb{Z}^d}$ be an asymptotic pair satisfying the flip condition with difference set $F = \{0, -e_1, ..., -e_d\}$. The following are equivalent :

● For every nonempty finite **connected** subset $S \subset \mathbb{Z}^d$ and $p \in \mathcal{L}_S(x) \cup \mathcal{L}_S(y)$, we have

 $\# (\operatorname{occ}_{\rho}(x) \setminus \operatorname{occ}_{\rho}(y)) = 1 = \# (\operatorname{occ}_{\rho}(y) \setminus \operatorname{occ}_{\rho}(x)).$

- The asymptotic pair (x, y) is **indistinguishable**.
- For every nonempty finite **connected** subset $S \subset \mathbb{Z}^d$, the **pattern complexity** of *x* and *y* is

$$\#\mathcal{L}_{\mathcal{S}}(x) = \#\mathcal{L}_{\mathcal{S}}(y) = \#(\mathcal{F} - \mathcal{S}).$$

Complexity #(F - S)

Complexity #(F - S) matches what is known :

• When
$$d = 1$$
 and $S = \{0, 1, ..., n - 1\}$:

$$\#(F-S) = \#({0,-1} - {0,1,\ldots,n-1}) = n+1$$

is the factor complexity of Sturmian words.

Complexity #(F - S)

Complexity #(F - S) matches what is known :

• When d = 1 and $S = \{0, 1, ..., n - 1\}$:

$$\#(F-S) = \#(\{0,-1\} - \{0,1,\ldots,n-1\}) = n+1$$

is the factor complexity of Sturmian words.

• When d = 2 and $S = \{0, 1, ..., n-1\} \times \{0, 1, ..., m-1\}$:,

$$#(F - S) = #({\mathbf{0}, -\mathbf{e}_1, -\mathbf{e}_2} - {(i, j): \mathbf{0} \le i < n, \mathbf{0} \le j < m})$$

= mn + m + n

is the rectangular pattern complexity of a **discrete plane** with totally irrational slope.

V. Berthé, L. Vuillon. Tilings and rotations on the torus : a two-dimensional generalization of Sturmian sequences. Discrete Mathematics, 223(1-3) :27–53, 2000.

Language of a discrete plane

The #(F - S) distinct patterns of connected support S appearing in

are obtained by sliding the support S on top of the difference set F:

Outline

Indistinguishable asymptotic pairs of configurations

Open question 1

Question

Let $d \ge 1$ and $x \in \{0, 1, ..., d\}^{\mathbb{Z}^d}$ be uniformly recurrent configuration. Let $F = \{\mathbf{0}, -\mathbf{e}_1, ..., -\mathbf{e}_d\}$. Are the following equivalent?

- for every nonempty finite connected subset $S \subset \mathbb{Z}^d$, we have $\#\mathcal{L}_S(x) = \#(F S)$.
- there exists a totally irrational vector α ∈ [0, 1)^d and ρ ∈ [0, 1) such that x = s_{α,ρ} or x = s'_{α,ρ} is a lower or upper d-dimensional Sturmian configuration with slope α and intercept ρ.

(We know that (2) implies (1).)

$$\begin{aligned} \boldsymbol{s}_{\alpha,\rho} : & \mathbb{Z}^{d} & \to & \{0, 1, \dots, d\} \\ & \boldsymbol{n} & \mapsto & \sum_{i=1}^{d} \left(\lfloor \alpha_{i} + \boldsymbol{n} \cdot \boldsymbol{\alpha} + \rho \rfloor - \lfloor \boldsymbol{n} \cdot \boldsymbol{\alpha} + \rho \rfloor \right), \\ & \boldsymbol{s}_{\alpha,\rho}' : & \mathbb{Z}^{d} & \to & \{0, 1, \dots, d\} \\ & \boldsymbol{n} & \mapsto & \sum_{i=1}^{d} \left(\lceil \alpha_{i} + \boldsymbol{n} \cdot \boldsymbol{\alpha} + \rho \rceil - \lceil \boldsymbol{n} \cdot \boldsymbol{\alpha} + \rho \rceil \right). \end{aligned}$$

30/32

Open question 2

A sequence $w \in \Sigma^{\mathbb{Z}}$ with $\#\mathcal{L}_n(w) \leq n$ is eventually periodic.

Nivat's conjecture

A configuration $x \in \Sigma^{\mathbb{Z}^2}$ for which there are $n, m \in \mathbb{N}$ with $\#\mathcal{L}_{(n,m)}(x) \leq nm$ is periodic.

Equivalently, a sequence $w \in \Sigma^{\mathbb{Z}}$ with totally irrational vector of symbol frequencies has complexity $\#\mathcal{L}_n(w) \ge n+1$.

Dual Nivat Conjecture

Let $d \ge 1$ and $F = \{0, -e_1, \ldots, -e_d\}$. Let $x \in \{0, 1, \ldots, d\}^{\mathbb{Z}^d}$ be a configuration with trivial stabilizer, i.e., $\sigma^n(x) = x$ only holds for n = 0. If the **frequencies** of symbols in x **exist and are rationally independent**, then $\#\mathcal{L}_S(x) \ge \#(F - S)$ for every nonempty connected finite support $S \subset \mathbb{Z}^d$.

J. Cassaigne. Double sequences with complexity mn + 1. volume 4, pages 153–170. 1999. Journées Montoises d'Informatique Théorique (Mons, 1998).

Open question 3

The pattern below is bispecial within the language of c_{α} and c'_{α} :

Bispecial factors within the language of a Sturmian sequence of slope $\alpha \in [0, 1)$ are related to the convergents of the continued fraction expansion of α (de Luca, 1997).

Question

Let $d \ge 1$ and $\alpha \in [0, 1)^d$ be a totally irrational vector. What is the relation between the set

$$V_{oldsymbollpha}=\left\{b-a\colon \exists w\in\mathcal{L}(c_{oldsymbollpha}) ext{ bispecial at positions } a,b\in\mathbb{Z}^d
ight\}$$

and simultaneous Diophantine approximations of α ?