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0 A Fibonacci’s complement numeration system for Z and 72
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Numeration systems for N and 7Z

Let w=wy---wy € {0,1}" for some N € N.

Binary NS for N
valp(w) = SN w2l
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Binary numeration system
Addition of integers using the Binary NS (valp(w) = >N w;2/) :

valo(w)  w

11 01011
17 10001
28 11100

Lemma

@ (Neutral prefix) For every u € {0,1}* : valo(0u) = vala(u).

@ Let X = {0,1}. For every n € N, there exists a unique
word w € ¥*\ (0X*) such that n = vala(w).

Definition (Base-2 Numeration system)

For every n € N, we denote this unique word by rep,(n).

sage: (1079).bits()
[0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,1,0,1,0,1,1,0,0,1,1,1,0,1,1,1]
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Numeration systems for N and 7Z

Let w=wy---wy € {0,1}" for some N € N.

Binary NS for N
valo(w) = SN w;2!
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Numeration systems for N and 7Z

Let w=wy---wy € {0,1}" for some N € N.

Binary NS for N | Two’s complement notation for Z
valo(w) = SN w2l | valae(w) = SN w2l - w2V

6/50



Two’s complement numeration system

Two’s complement valpo(w) = SN " wi2'—wy2N advantages are

@ representation of all integers Z,
@ only one representation of zero,
@ addition on Z works the same as addition on N :

valo(w)  w  valag(w)
11 01011 +11
17 10001 -15
28 11100 -4

W D. E. Knuth. The art of computer programming. Vol. 2. Addison-Wesley, Reading,
MA, 1998. Seminumerical algorithms, Third edition.

Lemma (Neutral prefix)

For every u € {0,1}*:
Y 10,1} {valgc(ﬁu) = valye(1u)
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Numeration systems for N and 7Z

Let w=wy---wy € {0,1}" for some N € N.

Binary NS for N
valp(w) = SN wi2!

Two’s complement notation for Z
valae(w) = SN w2l —wy2N
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Numeration systems for N and 7Z

Let w=wy---wy € {0,1}" for some N € N.

Binary NS for N Two’s complement notation for Z
valo(w) = SN w2l | valpe(w) = SN w2l w2V

Fibonacci NS for N
valz(w) = SN, wF;

where Fibonacci numbers are indexed as F, = F,,_1 + F,_» for all
nZ2W|th Fo:1, F1 = 2.
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Fibonacci numeration system (Zeckendorf)

Proposition (Zeckendorf)

Let X = {0, 1}. For every n € N, there exists a unique word

we T\ (Z115* U0T¥)

such that n = valz(w) = Zfio w;F;, where Fibonacci numbers
Fn= F,_4 + Fy_5 forall n > 2 are indexed with Fp = 1, F; = 2.

Definition (Zeckendorf Numeration system 2)

For every n € N, we denote this unique word by rep~(n).

1000000 = 832040 + 121393 + 46368 + 144 + 55
= Fog + Fo4 + Fo2 + Fio + Fs
repz(1000000) = 10001010000000000010100000000

@ E. Zeckendorf. Représ. des nombres naturels par une somme de nombres de
Fibonacci ou de nombres de Lucas. Bull. Soc. Roy. Sci. Lieége, 41 :179-182, 1972. g;59



The Berstel adder (1986)

Addition is almost like normalization. Given two numbers represented
in the Fibonacci number system. the first step for addition is to add the digits at
the corresponding positions. This gives a sequence of 0.1. and 2. This
sequence is fed into the adder. which gives as output the corresponding

sequence. written only with 0 and 1.

@ Berstel, Jean. « Fibonacci Words — A Survey ». In The Book of L, ed. G.
Rozenberg et A. Salomaa, 13-27. Berlin, Heidelberg : Springer, 1986. o) 50



Numeration systems for N and 7Z

Let w=wy---wy € {0,1}" for some N € N.

Binary NS for N
valp(w) = SN wi2!

Two’s complement notation for Z

Va|QC(W) = ,li_o1 W,'2i—WN2N

Fibonacci NS for N
valz(w) = SN wiF;

where Fibonacci numbers are indexed as F, = F,,_1 + Fn_» for all

nZQWithF0:1,F1:2.

11/50



Numeration systems for N and 7Z

Let w=wy---wy € {0,1}" for some N € N.

Binary NS for N Two’s complement notation for Z
valp(w) = Zfio w;2' valae(w) = Z/ 0 ! wi2l—wy2M

Fibonacci NS for N Fib.’s complement NS F for Z
valz(w) = SN wiFi | vale(w) = X2 wiFi—wor Fox_q

where Fibonacci numbers are indexed as F, = F,_1 + F,_» for all
n > 2 with F0:1,F1 =2.

Not to be confused with NegaFibonacci coding, see :

W Knuth, Donald (2009), The Art of Computer Programming, Volume 4, Fascicle 1 :
Section 7.1.3, pp. 36—39.
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Fibonacci’s complement num. system F for Z

.20

0o
00 - 18 n repx(n)
n | repy(n) o - 17 20 | 0101010
7 | 01070 ( : >4 0 - 16 19 | 0101001
6 01001 10 - 18 | 0101000
5 01000 01 0" 17 | 0100101
4 00101 o1 - 14 16 | 0100100
3 00100 00 — 00 - 13 15 | 0100010
2 010 12 14 | 0100001
1 001 1 ol 13 | 0100000
0 0 00 P 00 12 | 0010101
-1 1 01 o 10 11 | 0010100
-2 100 01 o1 - 9 10 | 0010010
i O FOS
-5 | 10000 6 | 1001010
o 8 7 | 1001001
I 4 -8 | 1001000
0 0 - -8 -9 | 1000101
-10 | 1000100
o1- 9 11 | 1000010
01 10 oo --10 | -12 | 1000001
11 -13 | 1000000

01 10 7
1 00 or - 712
—| start @ -2 00 —~ 00 - -13
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Fibonacci’s complement num. system F for Z

Lemma (Neutral prefix)

Let X ={0,1}. Forevery u € (XxX)*\ &*11xX*:
@ valz(000u) = val#(0u)
o vaI;(101 U) = vaI;(1 U) [since —ng + ng_1 = —ng_g]

For every n € 7Z, there exists a unique odd-length word
we X(ZX)*\ (Z*11X* U 000" U101X")

such that n = valz(w).

Definition (Numeration system F)

For every n € Z, we denote this unique word by rep »(n).
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Fibonacci’s complement num. system F for Z?

Definition (Numeration system 7 for Z?2)

For n = (ny, np) € Z?, we define

() = pad (2710}

rep ()

where pad padds the representation shorter in length with the
neutral prefix.

For example :
repx((—1,6)) = pad (r‘::é(_aw = pad <o12)o1) - (83(1380
=(0) () (o) o) 5)
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Result #1 : We can modify Berstel adder
'

N
B

.
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Result #1 : We can modify Berstel adder

Addition of 7 representations (L., LepSova, 2022)
The modified adder 7~ : {0,1,2}* — {0, 1}* satisfies

valz(Tx(repz(m) + repx(n))) = m+ n, for every m,n € Z.
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Outline

e Rappels : Combinatorics on words
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Fixed point of a uniform morphism

sage:
sage:
word:
word:
word:
word:
word:
word:
word:
word:
sage:
word:
sage:
b

sage:

m = WordMorphism('a->ab,b->ba"')
for i in range(8): m('a', i)

a

ab

abba

abbabaab

abbabaabbaababba
abbabaabbaababbabaababbaabbabaab

abbabaabbaababbabaababbaabbabaabbaababba. . .
abbabaabbaababbabaababbaabbabaabbaababba. . .

w = m.fixed_point('a'); w

abbabaabbaababbabaababbaabbabaabbaababba. . .

w[1079]

(10%9) .bits()

[0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,1,0,1,0,1,1,0,0,1,1,1,0,1,1,1]
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Cobham’s theorem

Theorem (Cobham, 1972)

An infinite word x = XxgxqX»... is a fixed point of a k-uniform
morphism

if and only if

there exists deterministic finite automaton with output A s.t.
Xn = A(repg(n)) for every n € N.

Example (Thue-Morse) :

repo(n) is the base 2 ex-
pansion of n € N

@ Cobham, Alan. « Uniform tag sequences ». Mathematical Systems Theory. An

International Journal on Mathematical Computing Theory 6 (1972) : 164-92.
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Fixed point of a nonuniform morphism

sage:
sage:
word:
word:
word:
word:
word:
word:
word:
word:
word:
sage:
word:
sage:
b

sage:

m = WordMorphism('a->ab,b->a"')

for i in range(9): m('a', i)

a

ab

aba

abaab

abaababa

abaababaabaab
abaababaabaababaababa
abaababaabaababaababaabaababaabaab

abaababaabaababaababaabaababaabaababaaba. . .

w = m.fixed_point('a'); w

abaababaabaababaababaabaababaabaababaaba. . .

w[1079]

(10%9) .bits()

[0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,1,0,1,0,1,1,0,0,1,1,1,0,1,1,1]
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Cobham’s theorem for nonuniform morphisms

Theorem (P. Lecomte, M. Rigo, 2001)

An infinite word x = XXy Xo... is the image under a coding of a
fixed point of a morphism

if and only if

there exists deterministic finite automaton with output A and
an abstract numeration system S s.t. x, = A(reps(n)) for all
neN.

Example (Fibonacci) :

repz(n) is the Zecken-
dorf expansion of n € N

W Berthé, Valérie, et Michel Rigo, éd. Combinatorics, automata and number theory.
Vol. 135. Encyclopedia of Mathematics and its Applications. Cambridge University ,q,50



Two-dimensional substitutions (Mozes)
Two-dimensional substitution systems

Definitions. (1) A two-dimensional substitution system is a pair (&7, )
where:

s — the alphabet, a finite set of symbols called letters.

% — a finite set of derivation rules of the form

Xpp v * Xy
a— : a,x; €l
Xy v Xy

k is called the height of the rule and / its width. Such a rule is said to belong to a.

[.]

UCLLYAQLUIL 1 UIV UVIVIBIULE WU 1L GLIU AUPIGULLE VT VA T Ajj UJ IV 1151 IUGUU SIuY Vi tay

chosen derivation rule. This process of choosing must be done so that for all the
letters x;, 1 =j = m in one row, the derivation rules chosen all have the same
height. For all the letters x;, 1 </ < nin one column, the derivation rules chosen
all have the same width. These requirements ensure that for a block a, if it is
legally denved wegeta rectangular block ﬁ This process of replacmg each letter

@ Mozes, Shahar. « Tilings, Substitution Systems and Dynamical Systems

Generated by Them ». Journal d’Analyse Mathématique 53 (1989) : 139-86.
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Double Fibonacci substitution & a fix. pt over N2

Let B={a,b,c,d} and F : B — B*2 be a 2-dimensional
morphism :

Fam <: Z),br—> (2),0'—>(a b).d — (a)

Applying the morphism gives

a b a
c d
a — —|lc d ¢ —
a b
a b a

Then x = F(x) = limk_, ., FX(a) is the fixed point of F.

VDO H VO

T QT T Q

VDO DY YO

VDO OH ©» O

O QT T Q
I
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Cobham’s theorem generalization in N2
Theorem (E. Charlier, T. Karki, M. Rigo, 2010)

The 2-dimensional infinite word x € B is is the image under
a coding of a shape-symmetric pure morphic word if and only
if it is S-automatic for some abstract numeration system S =
(LX,<)withe € L.

If x = F(x), we have 5
Xn = Afr(repz(n)), VneN

3)-(-0 00

For example,
rep~(1,4) = pad (

ONO TR WN—=0O|S
—
o
—
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Question

Can we generalize Cobham’s theorem to 72 ? ]
a bla b a
bla c|lc d c d|ic d ¢
F: AR — ala b — a bla b a—
ala b c dlc d ¢
a bla b a

Motivation : understanding aperiodic Wang tilings of the plane
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Outline

e An automatic characterization of an aperiodic Wang shift
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Wang tiles and configurations
A Wang tile is a square tile with 4 edge labels (and an index) :

M
3D

(0) (0) M P 0)
JOD|H1D||D2J|D J4H||H5H||D6H||I 7B
O L P K P N P O

Z= L L L P P K K N
ES8I|CO9TI|[I10A||I11E||I121||B131|/A141|]I15C
O L O P M K

Adjacent tiles with distinct label on common edge are forbidden :

(6] M
H1D|D3D
L K

Allowed.

A configuration x : Z? — Z without forbidden pattern is said valid.

The set

M M
D2J|D3D
P K

Forbidden.

Qz = {x .72 -+ {0,...,15} | x is a valid configuration}

is called the Wang shift 2z associated to the set Z of Wang tiles.

26/50



Self-similarity of (2
Let A ={0,1,...,15} be an alphabet and ¢ be the two-dimensional
morphism defined by

2

¢o: A— A*
01— (14), 1 (13), 2 (12,10), 3+ (11, 8),
4 (14,7), 5—(13,7), 6—(12,7), 70—)(12,

8 — 3, 9+ 3, 10 — 2,11»—) 61,
oy el bl e
The substitutive subshift :

Xy ={we A% | L(w) C L(¢)}

Lemma (L., LepSova, 2021)

|

27/50

@ Three characterizations of a self-similar aperiodic 2-dimensional subshift. (2020)
arXiv:2012.03892


http://arxiv.org/abs/2012.03892

the Wang shift (2

ion in

A valid configurat

a1 p=lohvol Nalach=] oot fahupval Relachd oo [Vahpte] 1T R S
M A M A < [as] A < A
mlalmlals|alAala]~A

Or-0O|0o0|0O~-0|0—13|AZ0|0-0O|0—3|AS0O|0O—1| ©

MO Son S idon |p S T o | A N don ] 10
M [=] — A — < A — A
[as] A — A — < A — (]

Or~0O|0—1|R00|O— 3|3 RS 0|0~ [P0 |O— 3| <t
— ja=) 3] ja=) O — = <] =
— jas) 3] jas) Q — = <3| =

A S o | DA A Z | Z8 A S Mo | DA raoz| o
— =) — [z — — A — ]

— [a) — o= — — [a) — fae]

MO S| S| T oo ST S S T o | e
[as) =] < [=) — [as] =] < A
as] = < =] — as] A < A

Or-0O|0—3|AZ0|0—13| R0 |0O=-0O|0—3|ASO|O— | ™
— ja=) — ja=) <] — = — =
— ja=) — jas €| — = — =

A i deon | A S o p A Ay A Sl o | A i Mo | ©
— =) — o — — =) — A
— (m) — [m) — — a — a

L0000 —=3[300|O—=3| 33300 |0 30O[O—a| 7
= = 3] ja=) O <] = <] =
= jas] M jas| Q <3| = €3] =

[P {aW el M- W [aMV=t-A - Aiclel [ W W [aBs e W e Phan{al] [M =LA N
— - — [ag] — — ) — fac)

— - — [ag] — — ) — fac)

MO | Soa | S o A S D S Son | Do 9P
[as] A — A — M A — A
as] [ — [ — m A — A

Or=~0|0—=13|H00|0—=|0 0|00 0= |H0O|O——3| T
— jas] = jas] = — = <) =
— 2] = = m — = =) o

[N [¥lSYal W fa W [aWo W o Phan{al] [a WA FYo) [Vt YaW [ Phan{oB] M4 R
O e F w = o |

A finite part of a particular configuration x € Qz.
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Result #2

(0] (0) M P P K (0]
JOD||H1D|D2J|D3D||J4H|H5H||[D6H||I 7B
O L P N P

Z= L L L P K
ESI||/COT||I10A||T1IE|I12T||B131||{A141||115C
O L K K

Theorem (L., LepSova, 2021)

There exist
@ a numeration system F for Z? with a representation
function repr: 22 — {(3).(9),({). (1)} and
@ a deterministic finite automaton A with output
such that the configuration x : Z2 — {0,1,...,15} given by
Xn = A(repr(n))  forevery n ¢ 72

is a valid Wang configuration x € Q2.
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The automaton A
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Outline

Q Nonexpansive direction in the Jeandel-Rao Wang shift
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Conway worms

The notion of Conway worms was considered in the context of tilings
by Penrose kites and darts. It was then defined as

“a sequence of bow ties placed end to end”

]

L=<

@ Every tiling by Penrose kites and darts contains arbitrarily
long finite Conway worms.

@ There are 5 different possible slopes for these Conway
worms and the difference between any two of them is a
multiple of .

(a)

\.

‘Grunbaum, Branko, G. C. Shephard. Tilings and Patterns : Second Edition.
Mineola, New York : Dover Publications, 2016. (see §10.5 and Fig. 10.5.5)
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Penrose tiling : 10 semi-infinite Conway worms

(c)

“In (c), we have marked by shading the first-order cartwheeel and the
ten semi-infinite Conway worms that radiate from its sides."

W Grunbaum, Branko, G. C. Shephard. Tilings and Patterns : Second Edition.

Mineola, New York : Dover Publications, 2016. (Figures 10.5.1 and 10.5.6)
33/50



Positive/negative resolution of a Conway worm

An unresolved Conway worm made of two kinds of hexagons :

negative 500 I::CO::O E positive
resolution

resolution

together with its positive and negative resolutions within a Penrose
tiling (according to some orientation).

@ Nicolaas Govert de Bruijn. Algebraic theory of Penrose’s nonperiodic tilings of the
plane. 1, II. Nederl. Akad. Wetensch. Indag. Math., 43(1) :39-52, 563-66, 1981.

@ E. Arthur Robinson, Jr. The dynamical properties of Penrose tilings. Trans. Amer.
Math. Soc., 348(11) :4447-4464, 1996.
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Nonexpansive subspaces in subshifts

Let F be a subspace of RY. Given t > 0, the t-neighbourhood of F
is defined by F! := {g € Z9: dist(g, F) < t}.

Definition (expansive subspace)

J

A subspace F c RY is expansive on a subshift X ¢ AZ i
there exists t > 0 such that for any x, y € X,

X|pt = y|pt implies that x = y.

Definition (nonexpansive subspace)

A subspace F is nonexpansive if for all > 0, there exist x, y €
X such that x|gt = y|p: but x # y.

@ Mike Boyle and Douglas Lind. Expansive subdynamics. Trans. Amer. Math. Soc.,
349(1) :55—-102, 1997.

35/50



Nonexpansive subspaces in subshifts

Theorem (Boyle, Lind, 1997)

If X ¢ A% is an infinite subshift, then, for each 0 < n < d, there
exists a n-dim. subspace of R that is nonexpansive on X.

@ Mike Boyle and Douglas Lind. Expansive subdynamics. Trans. Amer. Math. Soc.,
349(1) :55-102, 1997.

Theorem (Hochman, 2011)

Any one-dimensional subspace in the plane R? occurs as the
unique nonexpansive one-dimensional subspace of a Z2-action.

As a consequence, a set of one-dimensional subspaces occurs as
the set of nonexpansive directions for a subshift X C A% if and only if
it is closed and non-empty.
@ Michael Hochman. Non-expansive directions for Z? actions. Ergodic Theory
Dynam. Systems, 31(1) :91-112, 2011.
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Nonexpansive directions

If Fis expansive, then every translate of F is expansive.

Thus, in the 2-dimensional case, we refer to nonexpansive
directions.

The set of nonexpansive directions is difficult to compute in general
and brings a deeper understanding of a subshift.

Let (X,Z9,f)and (Y,Z9, g) be two topologically conjugate sub-
shifts and F ¢ R be a codimension 1 subspace. If F is a no-
nexpansive in X, then F is nonexpansive in Y.

The notions of expansive and nonexpansive directions was used to
obtain partial results toward solving Nivat’s conjecture.

@ Van Cyr and Bryna Kra. Nonexpansive 72 -subdynamics and Nivat's conjecture.
Trans. Amer. Math. Soc., 367(9) :6487-6537, 2015.

@ Cleber Fernando Colle. Nivat's Conjecture, Nonexpansiveness and Periodic
Decomposition. 2019. arXiv :1909.08195.
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Jeandel-Rao Wang tiles

Theorem (Jeandel, Rao, 2021)

No set of less than 11 Wang tiles is aperiodic and

b | DA PPd 4.1

is an aperiodic set of 11 Wang tiles.

.

@Jeande/, Emmanuel, Michaél Rao. « An Aperiodic Set of 11 Wang Tiles ».
Advances in Combinatorics, 2021, 18614. https://doi.org/10.19086/aic.18614

Equivalent geometrical shapes :

THILPR TP IR R TR
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https://doi.org/10.19086/aic.18614

A Conway worm of slope 0 in Jeandel-Rao WS

aunuhhian

3 6 6 6 6 6 6 6 6 6
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Result #3

Theorem (L., Mann, McLoud-Mann, 2022)

A minimal subshift of the Jeandel-Rao Wang shift contains
exactly 4 nonexpansive directions whose slopes are

5
{0, v+3, —3p+2, —<p+§}.

Nonexpansive directions come from slopes in the Markov Partition :

slope in the Markov Partition \ slope of nonexpansive direction

0 0

00 v+3
¥ —3p+2
¥? —p+3
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Conway worm of slope ¢ + 3

Two tilings of a 20 x 20 square illustrating the Conway worms of

slope ¢ + 3 :

The difference between the left and the right images is shown with a

colored background.
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Conway worm of slope —3p + 2

Two tilings of a 20 x 20 square illustrating the Conway worms of

slope

—3p+2:

The difference between the left and the right images is shown with a

colored background.
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5
Conway worm of slope —¢ + 3

5.
—p+3:

Two tilings of a 20 x 20 square illustrating the Conway worms of
slope

The difference between the left and the right images is shown with a

colored background.
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The 4 Conway worms in Jeandel-Rao WS

Tilings of a 30 x 30 square illustrating the four Conway worms :

FETIRTRTRRN 1 NI
8% .RERRRER. . 2%

The difference between both images is shown with a colored
background.

It reminds of the cartwheel tiling in the context of Penrose tilings.
44 /50



Proof is based on previous results

Recall that Jeandel-Rao tilings can be generated by coding the orbit
of a Z2-action on a torus partitioned into polygonal atoms Py..P;g :
The Z2-action on T = R2/((6,0), (1, + 3))z with ¢ = 1558 is :

ﬁ Markov partitions for toral Z2-rotations featuring Jeandel-Rao Wang shift and

model sets. Annales Henri Lebesgue, 4 :283-324, 2021.
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Results on Jeandel-Rao Wang shift X» g C Q9

@ P gives a symbolic representation of (R?/I', Z?, R)

@ there exists an almost 1-1 factor map f : Xp g — R2/T

@ (R?/I, 72, R) is the maximal equicontinuous factor of
(Xp g, Z2,0).

@ Xp g is a proper minimal, aperiodic and uniquely
ergodic subshift of the Jeandel-Rao Wang shift, i.e.,
Xp.R & o

@ The measure-preserving dynamical system
(Xp.g,Z2,0,v) is isomorphic to (R2/I', Z2, R, \) where

@ v is the unique shift-invariant probability measure on Xp p
e \is the Haar measure on R?/T.

@ Occurrences of patterns in Xp g is a 4-to-2 C&P set.

@ Markov partitions for toral Z2-rotations featuring Jeandel-Rao Wang shift and
model sets, Annales Henri Lebesgue 4 (2021) 283-324. doi:10.5802/ahl.73
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Results on Jeandel-Rao Wang shift X» g C Qo

We define
Mpr={] |J R"0Pa)

nez? ae{0,1,...,10}

the image under the Z2-action of the boundary of the partition P.

The set of points in T whose fibers under the factor map f :
Xp g — T are notsingletonsis {y € T: |f~'(y)| > 1} = Apg.

As a consequence :

Let H be a nonexpansive half-space for the subshift X» r. Then
there exist x,y € Xp g such that x|yqz2 = ¥|ynze, X # ¥, and
f(x) = f(y) € Ap a.
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Nonexpansive halfspace

The notion of nonexpansive direction can also be stated equivalently
in terms of nonexpansive half-spaces.

Definition (nonexpansive halfspace)

Let X ¢ A%’ be a subshift and o be a Z%-action on X. We say
that a half-space H c R is nonexpansive for ¢ if there exist
x,y € X such that X|zony = ¥|zdnn Ut X # y.

Lemma (Einsiedler, Lind, Miles, Ward, 2001)

A codimension 1 subspace V of R is nonexpansive for ¢ if and
only if there is a half-space H whose boundary is V and which
is nonexpansive for o.

@ Manfred Einsiedler, Douglas Lind, Richard Miles, and Thomas Ward. Expansive
subdynamics for algebraic 7.° -actions. Ergodic Theory Dynam. Systems,

21(6) :1695—-1729, 2001. (see Lemma 2.9)
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Idea of the proof
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The Z? action induces an exchange > of the intervals (or rotation of) B
and G. A point p on the segment PQ from (¢ — 1,0) to (1, 1) will
return to the segment in a manner captured by a rotation of % on
[0, 1].
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