Pavages apériodiques et codage de \mathbb{Z}^2 -actions sur le tore Sébastien Labbé **CNRS** Laboratoire Bordelais de Recherche en Informatique Séminaire de géométrie 10 mai 2019 Bordeaux, IMB aBRI

Outline

- Wang tiles, aperiodicity and quasicrystals
- 2 The search for small aperiodic set of Wang tiles
- 8 Results on JR tilings : Walking on a 2-torus
- Results on a self-similar set of 19 Wang tiles
- 5 Relation with Sturmian sequences
- Open questions
- Links and extra stuff

Outline

Wang tiles, aperiodicity and quasicrystals

- 2 The search for small aperiodic set of Wang tiles
- 8 Results on JR tilings : Walking on a 2-torus
- 4 Results on a self-similar set of 19 Wang tiles
- **5** Relation with Sturmian sequences
- Open questions
- Links and extra stuff

Wang tiles

A Wang tile is a square tile with a color on each border

Tile set T : a finite collection of such tiles. A tiling of the plane : an assignment

$$\mathbb{Z} imes \mathbb{Z} o T$$

of tiles on infinite square lattice so that the contiguous edges of adjacent tiles have the same color.

Note : rotation not allowed.

Eternity II puzzle (2007)

- A puzzle which involves placing 256 square puzzle pieces into a 16 by 16 grid while matching adjacent edges
- A 2 million prize (for the first solution found before 2011)
- No solution ever found
- Only 256! \times 4²⁵⁶ \approx 1.15 \times 10⁶⁶¹ possibilities to check.
- Existence of a tiling $\mathbb{Z} \times \mathbb{Z} \to T$ is **undecidable** in general...

Source:https://en.wikipedia.org/wiki/Eternity_II_puzzle

Periods

A tiling is called **periodic** if it is invariant under some non-zero translation of the plane.

A Wang tile set that admits a periodic tiling also admits a **doubly periodic** tiling : a tiling with a horizontal and a vertical period.

Aperiodicity

Conjecture (Wang 1961)

A Wang tile set which tiles the plane admits a periodic tiling.

A tile set is aperiodic if it tiles the plane, but no tiling is periodic

- 1966 (Berger) : There exists an aperiodic set of Wang tiles
- 1976 (Penrose) : discovered an aperiodic set of two tiles

Quasicrystals

- 1982 (Shechtman) : observed that aluminium-manganese alloys produced a **quasicrystals structure**
- 2011 : Dan Shechtman receives Nobel Prize in Chemistry
- A Ho-Mg-Zn **icosahedral quasicrystal** formed as a pentagonal dodecahedron and its **electron diffraction** pattern :

"His discovery of quasicrystals revealed a **new principle for packing** of atoms and molecules", stated the Nobel Committee that "led to a paradigm shift within chemistry".

Source:https://en.wikipedia.org/wiki/Quasicrystal

Outline

Wang tiles, aperiodicity and quasicrystals

- 2 The search for small aperiodic set of Wang tiles
- 8 Results on JR tilings : Walking on a 2-torus
- 4 Results on a self-similar set of 19 Wang tiles
- **5** Relation with Sturmian sequences
- Open questions
- Links and extra stuff

Sur quelle rue de Bordeaux se trouve cette porte?

Discoveries of aperiodic Wang tile sets (< 2000)

Image credit: http://chippewa.canalblog.com/archives/2010/06/04/18115718.html

- 1966 (Berger) : 20426 tiles (lowered down later to 104)
- 1968 (Knuth) : 92 tiles
- 1971 (Robinson) : 56 tiles
- 1971 (Ammann) : 16 tiles
- 1987 (Grunbaum) : 24 tiles
- 1996 (Kari) : 14 tiles
- 1996 (Culik) : (same method) 13 tiles

Discoveries of aperiodic Wang tile sets (2015)

Theorem (Jeandel, Rao, 2015)

- All sets of \leq 10 tiles are **periodic** or do not tile the plane.
- The following 11 Wang tile set is aperiodic :

Their algorithm is pictured below :

Image credit : Le Bagger 288, http://i.imgur.com/YH9xX.jpg

JR's 11 tiles ... as closed topological disks using base-1 rep. of $\mathbb N$:

152244 valid 7 \times 7 solutions but only 483 (+ ε) extend to $\mathbb{Z} \times \mathbb{Z}$.

(Solution found by Pauline Hubert and Antoine Abram, Sep 2018)

Aram Dermenjian's solution (Montréal, Sep 2018)

Jeandel and Rao proved aperiodicity by showing that tilings are given by horizontal strips of height 4 or 5 and the possible sequences $x \in \{4,5\}^{\mathbb{Z}}$ are exactly those whose language is given by the Fibonacci morphism $5 \mapsto 54, 4 \mapsto 5$.

Outline

- Wang tiles, aperiodicity and quasicrystals
- 2 The search for small aperiodic set of Wang tiles
- 8 Results on JR tilings : Walking on a 2-torus
- 4 Results on a self-similar set of 19 Wang tiles
- **5** Relation with Sturmian sequences
- Open questions
- Links and extra stuff

Question

Source : Natural Earth Projection (wikipedia)

Source:https://i.imgur.com/R2eAvWi.jpg

Question

On which surface are we walking?

Answer

The result, in simple terms

Walking on Jeandel-Rao tilings is like walking on a 2-torus :

Consequences :

- list the patterns, prédire their occurrences, frequencies and repetivity;
- description as cut and project schemes;
- diffraction properties as a quasicrystals,

Definitions (§6.5 Lind-Marcus for \mathbb{Z}^2 **-actions)**

- A topological partition of a (compact) metric space *M* is a finite collection *P* = {*P_a*}_{*a*∈*A*} of disjoint open sets whose closures *P_a* together cover *M* in the sense that *M* = ∪_{*a*∈*A*}*P_a*.
- Let (M, \mathbb{Z}^2, R) be a **dynamical system** with \mathbb{Z}^2 -action R on M.
- If $S \subset \mathbb{Z}^2$, a pattern $w : S \to \mathcal{A}$ is allowed for \mathcal{P}, R if

$$\bigcap_{\mathbf{k}\in S} R^{-\mathbf{k}}(P_{w_{\mathbf{k}}}) \neq \varnothing.$$

- Let $\mathcal{L}_{\mathcal{P},R}$ be the collection of all allowed patterns for \mathcal{P}, R .
- *X*_{P,R} is the symbolic dyn. system corresponding to *P*, *R*. It is the unique subshift *X*_{P,R} ⊂ *A*^{Z²} whose language is *L*_{P,R}.
- *P* gives a symbolic representation of (M, Z², R) if for every
 w ∈ X_{P,R} the intersection ∩_{k∈Z²} R^{-k} P_{wk} consists of exactly one
 point m ∈ M.
- *P* is a Markov partition for (*M*, Z², *R*) if *P* gives a symbolic representation of (*M*, Z², *R*) and *X*_{*P*,*R*} is a shift of finite type.

The torus \mathbb{R}^2/Γ and the \mathbb{Z}^2 -action *R* Let $\varphi = \frac{1+\sqrt{5}}{2}$. Consider the lattice $\Gamma = \langle (\varphi, 0), (1, \varphi + 3) \rangle_{\mathbb{Z}}$. $(1, \varphi + 3)$

We consider the action of \mathbb{Z}^2 on the torus \mathbb{R}^2/Γ :

$$\begin{array}{rccc} R: & \mathbb{Z}^2 \times \mathbb{R}^2 / \Gamma & \to & \mathbb{R}^2 / \Gamma \\ & (\mathbf{n}, \mathbf{x}) & \mapsto & R^{\mathbf{n}}(\mathbf{x}) := \mathbf{x} + \mathbf{n} \end{array}$$

for every $\mathbf{n} \in \mathbb{Z}^2$.

A fundamental domain of \mathbb{R}^2/Γ

A fundamental domain of \mathbb{R}^2/Γ is

The partition $\mathcal P$ of $\mathbb R^2/\Gamma$ Let

- \mathcal{T} be the Jeandel-Rao tile set,
- $\mathcal{P} = \{P_t\}_{t \in \mathcal{T}}$ be the partition of \mathbb{R}^2/Γ shown on the figure,
- $R^{\mathbf{n}}(\mathbf{x}) = \mathbf{x} + \mathbf{n}$ the \mathbb{Z}^2 -action,

Proposition

 $\mathcal{X}_{\mathcal{P},R}$ is a subshift of the Wang shift $\Omega_{\mathcal{T}}$

Results on Jeandel-Rao tilings $\mathcal{X}_{\mathcal{P},R} \subsetneq \Omega_0$

Theorem

- \mathcal{P} gives a symbolic representation of $(\mathbb{R}^2/\Gamma, \mathbb{Z}^2, R)$
- there exists an almost 1-1 factor map $f : \mathcal{X}_{\mathcal{P},R} \to \mathbb{R}^2/\Gamma$
- $(\mathbb{R}^2/\Gamma, \mathbb{Z}^2, R)$ is the maximal equicontinuous factor of $(\mathcal{X}_{\mathcal{P}, R}, \mathbb{Z}^2, \sigma)$.
- *X*_{P,R} is a proper minimal, aperiodic and uniquely ergodic subshift of the Jeandel-Rao Wang shift, i.e., *X*_{P,R} ⊊ Ω₀.
- The measure-preserving dynamical system
 (X_{P,R}, Z², σ, ν) is isomorphic to (R²/Γ, Z², R, λ) where
 - ν is the unique shift-invariant probability measure on $\mathcal{X}_{\mathcal{P},R}$
 - λ is the Haar measure on \mathbb{R}^2/Γ .
- Occurences of patterns in $\mathcal{X}_{\mathcal{P},R}$ is a 4-to-2 C&P set.

See : *A Markov partition for Jeandel-Rao aperiodic Wang tilings*, arXiv:1903.06137, Pi Day, 2019.

Outline

- Wang tiles, aperiodicity and quasicrystals
- 2 The search for small aperiodic set of Wang tiles
- 3 Results on JR tilings : Walking on a 2-torus
- Results on a self-similar set of 19 Wang tiles
- 5 Relation with Sturmian sequences
- Open questions
- Links and extra stuff

A self-similar aperiodic set \mathcal{U} of 19 Wang tiles

Theorem

The Wang shift $\Omega_{\mathcal{U}}$ is self-similar, aperiodic and minimal.

$$\Omega_{\mathcal{U}} \xleftarrow{\alpha:\Box \mapsto \Box, \Box \mapsto \Box} \Omega_{\mathcal{V}} \xleftarrow{\beta:\Box \mapsto \Box, \Box \mapsto \Box} \Omega_{\mathcal{W}} \xleftarrow{\gamma:\Box \mapsto \Box} \Omega_{\mathcal{U}}$$

See : A self-similar aperiodic set of 19 Wang tiles, *Geom Dedicata* (2018) doi:10.1007/s10711-018-0384-8

The partition $\mathcal{P}_{\mathcal{U}}$ of \mathbb{T}^2

O J 0 F	0 H 1 F	M F 2 J	M F 3 D	Р Ј 4 Н	Р Н 5 Н	К F 6 H	К D 7 H	0 I 8 B	L E 9 G
0	L	Р	к	Р	N	Р	Р	0	0
L	L	Р	Р	Р	Р	К	К	N	
C 10 G	I 11 A	G 12 E	I 13 E	G 14 I	I 15 I	B 16 I	A 17 I	I 18 C	
L	0	Р	Р	К	К	м	ĸ	P	

Let

- U be the above set of 19 tiles,
- *P*_U = {*P*_u}_{u∈U} be the partition of T² shown on the figure,

•
$$R^{\mathbf{n}}(\mathbf{x}) = \mathbf{x} + \varphi^{-2}\mathbf{n}$$
 the \mathbb{Z}^2 -action,

Proposition

 $\mathcal{X}_{\mathcal{P}_{\mathcal{U}}, \mathcal{B}_{\mathcal{U}}}$ is a subshift of the Wang shift $\Omega_{\mathcal{U}}$

Results on $\mathcal{X}_{\mathcal{P}_{\mathcal{U}}, \mathcal{R}_{\mathcal{U}}} = \Omega_{\mathcal{U}}$

Theorem

- $\mathcal{P}_{\mathcal{U}}$ gives a symbolic representation of $(\mathbb{T}^2, \mathbb{Z}^2, \mathcal{R}_{\mathcal{U}})$
- $\mathcal{X}_{\mathcal{P}_{\mathcal{U}}, \mathcal{R}_{\mathcal{U}}}$ is equal to the Wang shift $\Omega_{\mathcal{U}}$
- $\mathcal{P}_{\mathcal{U}}$ is a Markov partition for $(\mathbb{T}^2, \mathbb{Z}^2, \mathcal{R}_{\mathcal{U}})$
- there exists an almost 1-1 factor map $f: \Omega_{\mathcal{U}} \to \mathbb{T}^2$
- (T², Z², R_U) is the maximal equicontinuous factor of (Ω_U, Z², σ).
- The measure-preserving dynamical system (Ω_U, Z², σ, ν) is isomorphic to (T², Z², R, λ) where
 - ν is the unique shift-invariant probability measure on $\Omega_{\mathcal{U}}$
 - λ is the Haar measure on T².
- Occurences of patterns in Ω_U is a 4-to-2 C&P set.

See : A Markov partition for Jeandel-Rao aperiodic Wang tilings, arXiv:1903.06137, Pi Day, 2019.

Outline

- Wang tiles, aperiodicity and quasicrystals
- 2 The search for small aperiodic set of Wang tiles
- 8 Results on JR tilings : Walking on a 2-torus
- 4 Results on a self-similar set of 19 Wang tiles
- **5** Relation with Sturmian sequences
- Open questions
- Links and extra stuff

Factor complexity

Let $w \in \mathcal{A}^{\mathbb{Z}}$. The **factor complexity** is a function $p_w(n) : \mathbb{N} \to \mathbb{N}$ counting the number of factors of length *n* in the sequence *w*.

 $w = \dots 000100$ 0100 010010001000100010001001001...

 $Fact_w(4) = \{0001, 0010, 0100, 1000, 1001\} \implies p_w(4) = 5$

Lemma

An infinite word $w \in A^{\mathbb{Z}}$ that has $p_w(n) \leq n$ factors of length n is **periodic**.

Definition

A **sturmian** word is an infinite word having exactly $p_w(n) = n+1$ factors of length *n*.

Words of complexity p(n) = n + 1

Theorem (Morse, Hedlund, 1940; Coven, Hedlund 1970)

 $w \in \{a, b\}^{\mathbb{Z}}$ is the coding of an irrational rotation R_{α} with $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ if and only if *w* is a sturmian sequence.

- \implies : the easy direction : counting number of intervals
- <= : more difficult : a common substitutive structure
 - Sturmian sequences in \mathcal{S}_{α} can be desubstituted indefinitely :

$$S_{\alpha} \xleftarrow{\omega_0} S_{f(\alpha)} \xleftarrow{\omega_1} S_{f^2(\alpha)} \xleftarrow{\omega_2} S_{f^3(\alpha)} \dots$$

Coding C_α ⊂ {a, b}^ℤ of R_α can be desubstituted (Rauzy induction) :

$$C_{\alpha} \stackrel{\omega_0}{\leftarrow} C_{f(\alpha)} \stackrel{\omega_1}{\leftarrow} C_{f^2(\alpha)} \stackrel{\omega_2}{\leftarrow} C_{f^3(\alpha)} \cdots$$

with $\omega_i \in \{\tau_a, \tau_b\}$ for every *i* where $\tau_a = (b \mapsto ab, a \mapsto a)$ and $\tau_b = (a \mapsto ba, b \mapsto b)$ where *f* is the Farey map.

- Continued fraction expansion of α
- Ostrowski expansion of the starting point x₀ ∈ T with respect to α.

Details in : Pytheas Fogg, 2002, chapter 6 written by Pierre Arnoux.

Outline

- Wang tiles, aperiodicity and quasicrystals
- 2 The search for small aperiodic set of Wang tiles
- 8 Results on JR tilings : Walking on a 2-torus
- 4 Results on a self-similar set of 19 Wang tiles
- **5** Relation with Sturmian sequences

Open questions

Links and extra stuff

Open Questions

- Find the **10 line proof** for the aperiodicity of Jeandel-Rao tilings.
- Can we generalize Jeandel-Rao tilings to other Pisot numbers?
- (done) I think the fundamental domain can be identified with the **window** of a cut-and-project set with dimension 2 + 2.
- What are the structure of the **other aperiodic tile sets** of cardinality 11 found by Jeandel-Rao?
- Does there exists an aperiodic self-similar Wang tile set of cardinality less than 16?
- Generalize the **characterization of primitive sequences** by Durand (1998) to Wang shifts.
- Describe the space of all aperiodic Wang shifts of low complexity (are continued fraction algorithms involved like for Sturmian sequences ?)

Open Questions

 Understand all of this in terms of shape-symmetric multidim. sequences (Maes, 1999) and S-automatic sequences using

Theorem (Charlier, Kärki, Rigo, 2010)

Let $d \ge 1$. The *d*-dimensional infinite word *x* is *S*-automatic for some abstract numeration system $S = (L, \Sigma, <)$ where $\epsilon \in L$ if and only if *x* is the **image by a coding of a shape-symmetric** *d*-dimensional infinite word.

- Prove that $\Omega_0 \setminus X_0$ is of measure 0.
- When is a SFT **metrically isomorphic** to the coding of a \mathbb{Z}^2 -action on a torus ?
- When is the coding of a Z²-action on a torus **metrically** isomorphic to a SFT?

Outline

- Wang tiles, aperiodicity and quasicrystals
- 2 The search for small aperiodic set of Wang tiles
- 8 Results on JR tilings : Walking on a 2-torus
- 4 Results on a self-similar set of 19 Wang tiles
- **5** Relation with Sturmian sequences
- Open questions
- Links and extra stuff

Publications

- A self-similar aperiodic set of 19 Wang tiles, Geom Dedicata (2018) doi:10.1007/s10711-018-0384-8
- Substitutive structure of Jeandel-Rao aperiodic tilings arXiv:1808.07768
- A Markov partition for Jeandel-Rao aperiodic Wang tilings arXiv:1903.06137
- 2-dimensional induction of Z²-actions on T², in preparation

Sage Jupyter notebooks reproducing the computations available online (link can be found in the arxiv comment section)

Some links

- Jupyter notebook .ipynb on nbviewer.jupyter.org/
- slabbe 0.5, Sage Optional Package,

```
sage -pip install slabbe
```

- Wooden laser-cut Jeandel-Rao tiles, blog post, Sep 7, 2018.
- Comparison of Wang tiling solver, blog post, Dec 12, 2018.
- Special thanks to David Renault and the
 - Université of Bordeaux FabLab, https://www.iut.u-bordeaux.fr/cohabit/

Regular tetrahedron packing arrangement (2009)

Lette

Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra

Amir Haji-Akbari, Michael Engel, Aaron S. Keys, Xiaoyu Zheng, Rolfe G. Petschek, Peter Palffy-Muhoray & Sharon C. Glotzer 🏁

"One of the simplest shapes for which the densest packing arrangement remains unresolved is the **regular tetrahedron** [...]. Using a novel approach involving thermodynamic computer simulations that allow the system to evolve naturally **towards high-density states**, Sharon Glotzer and colleagues have worked out the **densest ordered packing yet for tetrahedra**, a configuration with a packing fraction of 0.8324. Unexpectedly, the structure is a **dodecagonal quasicrystal**, [...] "

Source (2009): doi:10.1038/nature08641, https://www.quantamagazine.org/ digital-alchemist-sharon-glotzer-seeks-rules-of-emergence-20170

Polygon exchange transformations

Toral rotations R^{e_1} and R^{e_2} are **polygon exchange transformations** on the fundamental domain *D*.

39/41

Frequency of patterns

We deduce frequencies for every pattern, including the tile themselves :

- $5/(12\varphi + 14) \approx 0.1496$ $000, \qquad 1/(2\varphi + 6) \approx 0.1083$
 - 1/(5arphi+4)pprox 0.0827

$$1/(8arphi+2)pprox 0.0669$$

$$1/(18\varphi+10)pprox 0.0256$$

NOMBRES ALGÉBRIQUES ET SUBSTITUTIONS

PAR

G. RAUZY (*)

(1982)

- Let X be the subshift generated by the language of the Tribonacci substitution 1 → 12, 2 → 13, 3 → 1
- We have a measurable isomorphism with a rotation on $\mathbb{R}^2/\mathbb{Z}^2$:

• Open question (Pisot conjecture) : is it true for every irreducible unimodular Pisot substitution ?