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Question (from our talk at WORDS 2011)

Given (f0, f1) ∈ R2 such that f0 + f1 = 1, can we construct an infinite
sequence w ∈ AN on the alphabet A = {0, 1} such that the frequency of
digit i is fi for all i ∈ A ?

010010010100100100101001001001· · ·

x

y

(f0, f1)
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One answer is the expansion of π in base 2 :

π = 11.0010010000111111011010101000 · · ·

x

y

(f0, f1) = ( 12 ,
1
2 )

It is not a good answer because :

works only for (conjectured) f0 = f1 = 1
2 ;

Really different factors appear in the sequence (ex : 0000 and 1111) ;

All factors (2k factors of length k) appear in the sequence.

Sébastien Labbé (LIAFA) Complexity of ARP algorithm September 18th 2013 3 / 38



Outline

1 Define the question

2 Why Arnoux-Rauzy-Poincaré MCF algorithm ?
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Factors, frequencies, vectors

Factor : finite string of consecutive digits. Let

w = 010010010100100100101001001001.

Then 00100 and 1001 are factors of w . 1001 is a suffix of w .

|w | : the length of the factor w . |w | = 30.

|w |u : the number of occurences of the factor u in w .

|w |0 = 19, |w |1 = 11

|w |00 = 8, |w |01 = 11, |w |10 = 10, |w |11 = 0.

~u = (|u|0, |u|1) : the abelian vector of the factor u.

−−−→
00100 = (4, 1),

−−→
1001 = (2, 2).
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Factor complexity

Let w ∈ AN. The factor complexity is a function pw (n) : N→ N counting
the number of factors of length n, noted Lw (n), in the sequence w .

w = 000100 0100 0100100010001000100100010001001

Lw (4) = {0001, 0010, 0100, 1000, 1001}
n pw (n)

0 1
1 2
2 3
3 4
4 5

Upper bound : pw (n) ≤ |A|n.
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Balanced sequences

Definition

An infinite word w ∈ AN is said to be finitely balanced or C -balanced or
balanced if there exists a constant C ∈ N such that

for all pairs of factors u, v of w of the same length,

||~u − ~v ||∞ ≤ C .

Base 2 development of π is not 1-balanced because

||−−→0000−−−→1111||∞ = ||(4,−4)||∞ = 4.

If π was proven normal, then 0k and 1k would also appear for all k , thus it
would not be balanced.
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Let ∆d = {(f1, f2, . . . , fd ) ∈ Rd
+ : f1 + f2 + · · ·+ fd = 1}.

Question (updated)

Given a vector (f1, f2, · · · , fd ) ∈ ∆d , can we construct an infinite word w
on the alphabet A = {1, 2, · · · , d} such that the frequency of each letter
i ∈ A is equal to fi , w is balanced and has a linear factor complexity ?

010010010100100100101001001001

x

y

(f0, f1)

Fact (Answer for d = 2, Morse, Hedlund, 1940)

Sturmian words are 1-balanced and satisfy p(n) = n + 1.
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Definition (Arnoux, Rauzy, 1991)

An infinite word w ∈ {1, 2, . . . , d}N is an Arnoux-Rauzy word if all its
factors occur infinitely often, and if p(n) = (d − 1)n + 1 for all n, with
exactly one left special and one right special factor of length n.

Theorem (Delecroix, Hejda, Steiner, WORDS 2013)

For µ-almost every f in the Rauzy gasket, the Arnoux-Rauzy word wAR(f)
is finitely balanced.

Pierre Arnoux and Štěpán
Starosta. The Rauzy Gasket.
In Julien Barral and Stéphane
Seuret, editors, Further
Developments in Fractals and
Related Fields, Trends in
Mathematics, pages 1–23.
Birkhäuser Boston, 2013.

(1, 0, 0) (0, 1, 0)

(0, 0, 1)
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Sturmian words seen as IET

Sturmian word are obtained
from coding of rotations :

0

1− α

x

x+ α x+ 2α

x+ 3α

This can be generalized to larger alphabet with
coding of rotations on more intervals and more ge-
nerally to interval exchange transformations (IET) :

0

β

γ
x

x+ α x+ 2α

x+ 3α

...but such sequences are not balanced.

Anton Zorich. Deviation for interval exchange transformations.
Ergodic Theory Dynam. Systems, 17(6) :1477–1499, 1997.
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Sturmian words seen as billiard sequences

Sturmian word are obtained
from the cutting sequence of a line :

This can be generalized as billiard sequences (∼= E. Andres discrete line) :

Borel (2006)

−7/2 ≤ 2x− 5z < 7/2
−8/2 ≤ 3x− 5y < 8/2
−5/2 ≤ 2y − 3z < 5/2

Andres (2003)

Theorem (Baryshnikov, 1995 ; Bédaride, 2003)

If both the direction (α1, α2, α3) and (α−1
1 , α−1

2 , α−1
3 ) are Q independent,

the number of factors appearing in the Billiard word in a cube is exactly
p(n) = n2 + n + 1.
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Sturmian words seen as iteration of morphisms

From iteration of morphisms L =
0 7→ 0
1 7→ 01

and R =
0 7→ 10
1 7→ 1

:

Rd0Ld1Rd2Ld3Rd4Ld5 · · · (1)

where [d0; d1, d2, d3, . . .] is the continued fraction expansion of the slope of
the word drawn with horizontal and vertical unitary steps.

This generalizes to S-adic sequences...

Sébastien Labbé (LIAFA) Complexity of ARP algorithm September 18th 2013 14 / 38



Sturmian words seen as iteration of morphisms

From iteration of morphisms L =
0 7→ 0
1 7→ 01

and R =
0 7→ 10
1 7→ 1

:

Rd0Ld1Rd2Ld3Rd4Ld5 · · · (1)

where [d0; d1, d2, d3, . . .] is the continued fraction expansion of the slope of
the word drawn with horizontal and vertical unitary steps.

This generalizes to S-adic sequences...
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Continued fractions

Let α =
√

3−1
2

= 0.36602540 · · · . We have

α = 0 +
1

2 +
1

1 +
1

2 +
1

1 + · · ·

= [0; 2, 1, 2, 1, 2, 1, · · · ]

The convergents pn/qn are

0,
1

2
,

1

3
,

3

8
,

4

11
,

11

30
,

15

41
,

41

112
,

56

153
,

153

418
,

209

571
,

571

1560
,

780

2131
, · · ·

x

y

(1, 0) = [0]

(2, 1) = [0, 2]
(3, 1) = [0, 2, 1]

(8, 3) = [0, 2, 1, 2]
(11, 4) = [0, 2, 1, 2, 1]

(30, 11) = [0, 2, 1, 2, 1, 2]
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Continued fractions : matrices from convergents

With

L =

(
1 1
0 1

)
and R =

(
1 0
1 1

)
the convergents can be obtained as(

q0

p0

)
=

(
1
0

)
= R0

(
1
0

)
(

q1

p1

)
=

(
2
1

)
= R0L2

(
0
1

)
(

q2

p2

)
=

(
3
1

)
= R0L2R1

(
1
0

)
(

q3

p3

)
=

(
8
3

)
= R0L2R1L2

(
0
1

)
(

q4

p4

)
=

(
11

4

)
= R0L2R1L2R1

(
1
0

)
(

q5

p5

)
=

(
30
11

)
= R0L2R1L2R1L2

(
0
1

)
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Continued fractions : substitutions from matrices

With

L =
0 7→ 0
1 7→ 01

and R =
0 7→ 10
1 7→ 1

the convergents can be transformed into finite sequences over A :

w0 = R0(0) = 0
w1 = R0L2(1) = 001
w2 = R0L2R1(0) = 0010
w3 = R0L2R1L2(1) = 00100010001
w4 = R0L2R1L2R1(0) = 001000100010010
w5 = R0L2R1L2R1L2(1) = 00100010001001000100010001001000100010001

00100010001001000100010001001000100010001· · ·

(30, 11)

x

y

(f0, f1)

Sébastien Labbé (LIAFA) Complexity of ARP algorithm September 18th 2013 17 / 38



Continued fractions : from Euclid Algorithm

With

L =

(
1 1
0 1

)
and R =

(
1 0
1 1

)
the execution of Euclid Algorithm appears as(

30
11

)
= L2R1L2R1L2

(
0
1

)
(

8
11

)
= R1L2R1L2

(
0
1

)
(

8
3

)
= L2R1L2

(
0
1

)
(

2
3

)
= R1L2

(
0
1

)
(

2
1

)
= L2

(
0
1

)
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3D Continued fraction algorithms

Brun’s Algorithm : Subtract the second largest to the largest.

(7, 4, 6)→ (1, 4, 6)→ (1, 4, 2)→ (1, 2, 2)→ (1, 0, 2)→ (1, 0, 1)→ (0, 0, 1).

Selmer’s Algorithm : Subtract the smallest to the largest.

(7, 4, 6)→ (3, 4, 6)→ (3, 4, 3)→ (3, 1, 3)→ (2, 1, 3)→ (2, 1, 2)→ (1, 1, 2)
→ (1, 1, 1)→ (0, 1, 1)→ (0, 0, 1)

Poincaré’s Algorithm : Subtract the smallest to the mid and the mid to the
largest.

(7, 4, 6)→ (1, 4, 2)→ (1, 2, 1)→ (1, 1, 0)→ (1, 0, 0)

Arnoux-Rauzy’s Algorithm : Subtract the sum of the two smallest to the
largest (not always possible).

(7, 4, 6)→ Impossible

Fully subtractive’s Algorithm : Subtract the smallest to the other two.

(7, 4, 6)→ (3, 4, 2)→ (1, 2, 2)→ (1, 1, 1)→ (1, 0, 0)
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Experimentations

At WORDS 2011 :

Min Mean Max Std

Arnoux-Rauzy (AR) 0.6000 0.8922 1.200 0.09953

Fully subtractive 0.5000 6.047 14.21 4.385

Selmer 0.5000 2.151 12.75 2.076

Brun 0.5000 1.100 2.000 0.2625

Poincaré 0.5000 2.476 11.13 2.245

AR-Fully subtractive 0.5000 1.154 4.000 0.3759

AR-Selmer 0.5000 0.9991 1.600 0.1429

AR-Brun 0.5000 0.9169 1.520 0.1170

AR-Poincaré 0.5000 0.9066 1.320 0.1079

Table: Statistics for the discrepancy for strictly positive integer vectors
(a1, a2, a3) such that a1 + a2 + a3 = N and N = 100.
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Discrepancy

Definition

The discrepancy of an infinite word w ∈ AN having frequency fi for each
letter i ∈ A is defined as

lim sup
i∈A,p prefix of w

|fi · |p| − |p|i |.

w is balanced ⇐⇒ w has finite discrepancy ⇐⇒ w stays at bounded
distance from the euclidean line of direction (f0, f1)

Boris Adamczewski. Balances for fixed points of primitive
substitutions. Theoretical Computer Science, 307(1) :47 – 75, 2003.
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Arnoux-Rauzy and Poincaré substitutions

For all {i , j , k} = {1, 2, 3}, we consider

πjk : i 7→ ijk, j 7→ jk, k 7→ k (Poincaré substitutions)
αk : i 7→ ik , j 7→ jk, k 7→ k (Arnoux-Rauzy substitutions)

Namely,

π23 =


1 7→ 123
2 7→ 23
3 7→ 3

, π13 =


1 7→ 13
2 7→ 213
3 7→ 3

, α3 =


1 7→ 13
2 7→ 23
3 7→ 3

,

π12 =


1 7→ 12
2 7→ 2
3 7→ 312

, π32 =


1 7→ 132
2 7→ 2
3 7→ 32

, α2 =


1 7→ 12
2 7→ 2
3 7→ 32

,

π31 =


1 7→ 1
2 7→ 231
3 7→ 31

, π21 =


1 7→ 1
2 7→ 21
3 7→ 321

, α1 =


1 7→ 1
2 7→ 21
3 7→ 31

.
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Quadratic complexity for ARP sequences

In general, it is possible that p(n + 1)− p(n) > 3 for some values of n. Let

s = π23π23π13π23π23α1α3α2(1).

Indeed,
ps(n) = (1, 3, 5, 8, 11, 15, 19, 23, 27, 31, 35, 38, · · · )

Even worse, the fixed point of

π13π23 :


1 7→ 132133
2 7→ 2133
3 7→ 3

starting with letter 1 has a quadratic factor complexity.

Sébastien Labbé (LIAFA) Complexity of ARP algorithm September 18th 2013 24 / 38



Quadratic complexity for ARP sequences

In general, it is possible that p(n + 1)− p(n) > 3 for some values of n. Let

s = π23π23π13π23π23α1α3α2(1).

Indeed,
ps(n) = (1, 3, 5, 8, 11, 15, 19, 23, 27, 31, 35, 38, · · · )

Even worse, the fixed point of

π13π23 :


1 7→ 132133
2 7→ 2133
3 7→ 3

starting with letter 1 has a quadratic factor complexity.

Sébastien Labbé (LIAFA) Complexity of ARP algorithm September 18th 2013 24 / 38



Language of Arnoux-Rauzy Poincaré algorithm

Deterministic and minimized automaton recognizing the language L ⊂ SN
of ARP algorithm :

H23

H31 H12

H21

H32 H13

∆

∆

∆

initial state

Hjk

α3

α3

α1

α1

α2

α2

α1

α3

α2

α1

α3

α2

π

π

π

π

π

π

π

π

π

α1, α2, α3

πjk
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Let w = limn→∞ σ0σ1 · · ·σn(1) be an S-adic word generated by the
Arnoux-Rauzy-Poincaré algorithm from a totally irrational vector x ∈ ∆3.

Theorem (Factor Complexity)

The factor complexity of w is such that

p(n) ≤ 3n + 1 for all n ≥ 0 ;

p(n + 1)− p(n) ∈ {2, 3} for all n ≥ 0 ;

lim supn→∞
p(n)

n ≤ 5
2 < 3 (not sharp).

Theorem (Frequencies and Convergence)

The symbolic dynamical system generated by w is uniquely ergodic, and
the frequencies of letters are proved to exist in w and to be equal to the
coordinates of x.
Furthermore, the Arnoux-Rauzy-Poincaré algorithm is a weakly convergent
algorithm, that is, for Lebesgue almost every x ∈ ∆, if (Mn)n stands for
the sequence of matrices produced by the Arnoux-Rauzy-Poincaré
algorithm, then one has ∩nM0 · · ·Mn(R3

+) = R+x.
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Idea of the proof on complexity

Let p(n) be the factor complexity function of w. Let s(n) and b(n) be its
sequences of finite differences of order 1 and 2 :

p(n) = 1, 3, 5, 7, 9, 11, 14, 17, 20, 22, 24, 26, 28,

s(n) = p(n + 1)− p(n) = 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2,

b(n) = s(n + 1)− s(n) = 0, 0, 0, 0,+1, 0, 0,−1, 0, 0, 0,

Functions s and b are related to special and bispecial factors of w.

Theorem (Cassaigne, 1997 ; Cassaigne, Nicolas, 2010)

Let u ∈ AN be a infinite [recurrent] word. Then, for all n ∈ N :

s(n) =
∑

w∈RSn(u)

(d+(w)− 1) and b(n) =
∑

w∈BSn(u)

m(w)
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Life of a bispecial factor under ARP substitutions

Some synchronization lemmas allows to define uniquely the
antecedent wk+1 of a (bispecial) factor wk = s · σk (wk+1) · p.

wk is an extended image of wk+1

w = w0 w1 w2 · · · wn−1 wn = ε

σ0 σ1
σn−1 σn

We always have |wk | > |wk+1|.
The history of w is σ0σ1 · · ·σn.

The life of w is (wk)0≤k≤n.

wk+1 has only one bispecial extended image wk under an
Arnoux-Rauzy substitution.

wk+1 has one or two extended images under Poincaré substitution.
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wk+1 has only one bispecial extended image wk under an
Arnoux-Rauzy substitution.

wk+1 has one or two extended images under Poincaré substitution.
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Extension type of bispecial words

The extension type of a factor w of u is

E (w) = {(a, b) ∈ A×A|awb ∈ L(u)}.
If 1w2, 2w3, 3w1, 3w2 and 3w3 are such factors, then the extension type
is represented as :

E (w) =

1 2 3
1 ×
2 ×
3 × × ×

The bilateral multiplicity of a factor w is

m(w) = CardE (w)− d−(w)− d+(w) + 1

= 5− 3− 3 + 1 = 0.

A bispecial factor w is said

weak if m(w) < 0, neutral if m(w) = 0, strong if m(w) > 0.

A bispecial factor w is ordinary if

row ∩ column ⊆ E (w) ⊆ row ∪ column.
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Ordinary bispecial factor from an ordinary

Let

Sα = {α1, α2, α3},
Sπ = {π12, π13, π23, π21, π31, π32}
S = Sα ∪ Sπ.

CASE 1 : If history(w0) ∈ S∗ πjk S∗α{αk}, then m(w0) = 0 :

w0 w` w`+1 wn = ε

i j k
i ×
j ×
k × × ×

i j k
i ×
j ×
k × × ×

i j k
i
j ×
k × × ×

i j k
i × × ×
j
k ×

ordinary
m(w0) = 0

ordinary
m(wn) = 0

S∗ πjk S∗
α

αk
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Two ordinary bispecial factors from an ordinary

CASE 2 : If history(w0) ∈ S∗ πjk S∗α{αi , αj}, then m(w0) = 0 :

w0 w`

w`+1 wn = ε

w′`w′0

i j k
i ×
j × × ×
k ×

i j k
i ×
j × × ×
k ×

i j k
i ×
j
k × × ×

i j k
i × × ×
j ×
k

i j k
i
j × × ×
k ×

i j k
i ×
j
k × × ×

ordinary
m(w0) = 0

ordinary
m(wn) = 0

ordinary
m(w′0) = 0

S∗
πjk

S∗α
{αi, αj}πjk

S∗
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Two ordinary bispecial factors from an non ordinary

CASE 3 : If history(w0) ∈ S∗ πjk S∗α{πji , πki , πij , πkj}, then m(w0) = 0 :

w0 w`

w`+1 wn = ε

w′`w′0

i j k
i ×
k × × ×
j ×

i j k
i ×
j × × ×
k ×

i j k
i ×
j
k × × ×

i j k
i
j ×
k × × ×

i j k
i
j × × ×
k ×

i j k
i ×
k × × ×
k

ordinary
m(w0) = 0

neutral
not ordinary
m(wn) = 0

ordinary
m(w′0) = 0

S∗
πjk

S∗α
{πji, πki, πij , πkj}πjk

S∗
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Strong and weak bispecial factors from an non ordinary

CASE 4 : If history(w0) ∈ S∗ πjk S∗α{πjk , πik}, then m(w0) = ±1 :

w−
0 w−

`

w`+1 wn = ε

w+
`w+

0

i j k
i ×
j ×
k × × ×

i j k
i ×
j ×
k × × ×

i j k
i ×
j
k ×

i j k
i ×
j
k ×

i j k
i
j × ×
k × × ×

i j k
i × ×
j
k × × ×

weak
m(w−

0 ) = −1

neutral
not ordinary
m(wn) = 0

strong
m(w+

0 ) = +1

S∗
πjk

S∗α
{πjk, πik}πjk

S∗
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Idea of the proof on complexity

Show that the lifes of two pairs of strong and weak bispecial factors do not
intersect, i.e. the following equality is preserved :

|z+| < |z−| < |w +| < |w−|.

z− z−1 z−2 · · · z−h

zh+1 zh+2 · · · zm = ε

z+hz+

weak

strong

neutral
σ0 σ1

σh

σh+1 σmσh

σ0σ1 · · ·σh−1

w+ w+
1 w+

2 · · · w+
h w+

h+1 w+
h+2 · · · w+

`

w`+1 w`+2 · · · wn = ε

w−
`w−

σ0 σ1 σh σh+1

σ` σ`+1 σn

σ`
σ0σ1 · · ·σ`−1

strong

weak
neutral
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Conclusion

∀v ∈ R3
+ p(n) linear Balanced

Arnoux Rauzy words No Yes Almost always
Billiard, Andres discrete line Yes No Yes
Coding of rotations and of IET Yes Yes No
Brun S-adic sequences Yes ≈ 5n ? Almost always
ARP S-adic sequences Yes Yes : 5

2 n ?
Other S-adic sequences ? ? ?

Other motivations :

Study S-adic sequences, in the perspective of the S-adic conjecture
concerning factor complexity.

Study multidimensional continued fractions algorithms from
substitutions and combinatorics on words point of view.

Extend Pisot conjecture and Rauzy fractals (usually defined for fixed
point of morphisms) to S-adic sequences.
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Complexity of Brun sequences

An example using Sage shows that p(n + 1)− p(n) = 5 is possible for
Brun algorithm :

sage: Bij = WordMorphism(’i->ij,j->j,k->k’)

sage: Bjk = WordMorphism(’i->i,j->jk,k->k’)

sage: Bki = WordMorphism(’i->i,j->j,k->ki’)

sage: from itertools import cycle, repeat

sage: w = words.s_adic(cycle([Bij, Bjk, Bki]), repeat(’i’))

sage: w

word: ijjkjkkijjkkijkijijjkjkkijkijijjkkijijjk...

sage: prefix1000 = w[:1000]

sage: map(prefix1000.number_of_factors, range(20))

[1, 3, 7, 11, 15, 20, 25, 30, 35, 40, 45, 50,

55, 60, 65, 70, 75, 80, 85, 90]
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About lim supn→∞
p(n)

n for ARP

I think the bound 5
2 may be improved :

sage: p23 = WordMorphism(’1->123,2->23,3->3’)

sage: a1 = WordMorphism(’1->1,2->21,3->31’)

sage: m = p23 * a1

sage: x = m.fixed_point(’1’)

sage: p = x[:100000]

sage: L = [(n,p.number_of_factors(n)/float(n)) for n in range(10, 2000,10)]

sage: point(L, figsize=3)
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