Factor complexity of Arnoux-Rauzy and Poincaré S-adic sequences

Sébastien Labbé

Laboratoire d'Informatique Algorithmique : Fondements et Applications Université Paris Diderot Paris 7

Journées annuelles SDA2 du GDRIM Amiens June 10-12th 2013

Joint work with Valérie Berthé

2 Multidimensional Euclidean Algorithm

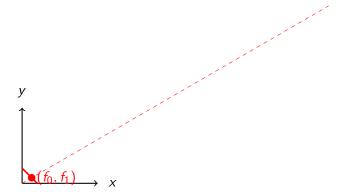
3 Result on factor complexity

2 Multidimensional Euclidean Algorithm

- 3 Result on factor complexity
- 4 Future work

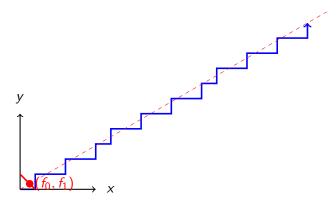
Question

Given $(f_0, f_1) \in \mathbb{R}^2$ such that $f_0 + f_1 = 1$, can we construct an infinite sequence $\mathbf{w} \in \mathcal{A}^{\mathbb{N}}$ on the alphabet $\mathcal{A} = \{0, 1\}$ such that the frequency of digit *i* is f_i for all $i \in \mathcal{A}$?



Question

Given $(f_0, f_1) \in \mathbb{R}^2$ such that $f_0 + f_1 = 1$, can we construct an infinite sequence $\mathbf{w} \in \mathcal{A}^{\mathbb{N}}$ on the alphabet $\mathcal{A} = \{0, 1\}$ such that the frequency of digit *i* is f_i for all $i \in \mathcal{A}$?



0100100101001001001001001001001...

Factor : finite string of consecutive digits. Let

w = 0100100101001001001001001001001.

Then 00100 and 1001 are factors of w. 1001 is a suffix of w.

Factor : finite string of consecutive digits. Let

w = 0100100101001001001001001001001.

Then 00100 and 1001 are factors of w. 1001 is a suffix of w.

|w|: the length of the factor w. |w| = 30.

Factor : finite string of consecutive digits. Let

w = 0100100101001001001001001001001.

Then 00100 and 1001 are factors of w. 1001 is a suffix of w.

|w|: the length of the factor w. |w| = 30.

 $|w|_{u}$: the number of occurences of the factor u in w.

$$|w|_0 = 19, \quad |w|_1 = 11$$

 $|w|_{00} = 8, \quad |w|_{01} = 11, \quad |w|_{10} = 10, \quad |w|_{11} = 0.$

Factor : finite string of consecutive digits. Let

w = 0100100101001001001001001001001.

Then 00100 and 1001 are factors of w. 1001 is a suffix of w.

|w|: the length of the factor w. |w| = 30.

 $|w|_{u}$: the number of occurences of the factor u in w.

$$|w|_0 = 19, \quad |w|_1 = 11$$

 $|w|_{00} = 8, \quad |w|_{01} = 11, \quad |w|_{10} = 10, \quad |w|_{11} = 0.$

 $\vec{u} = (|u|_0, |u|_1)$: the abelian vector of the factor u. $\overrightarrow{00100} = (4, 1), \quad \overrightarrow{1001} = (2, 2).$ Let **w** be the development in base *b* of a number $x \in \mathbb{R}$. Let *p* be a finite prefix of **w**.

Definition

The number x is called normal in base b if

$$\lim_{|p| \to \infty} \frac{|p|_s}{|p|} = \frac{1}{b^k}$$

for every string s of length k.

The number

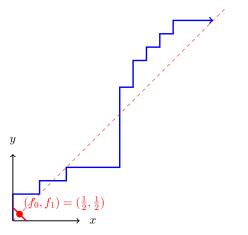
 $\pi = 11.0010010000111111011010101000\cdots$

is conjectured normal in base 2.

Normal numbers : not a good answer

Normal number are such that :

- Really different factors appear in the sequence (ex : 0000 and 1111);
- All factors $(b^k$ factors of length k) appear in the sequence.



$\pi = 11.0010010000111111011010101000 \cdots$

Complexity of ARP sequences

Definition

An infinite word $\mathbf{w} \in \mathcal{A}^{\mathbb{N}}$ is said to be finitely balanced or *C*-balanced or balanced if there exists a constant $C \in \mathbb{N}$ such that for all pairs of factors u, v of \mathbf{w} of the same length,

$$||\vec{u}-\vec{v}||_{\infty}\leq C.$$

Base 2 development of π is not balanced for C = 1 because the factors

0000 and 1111

appear in the development. If π was proved normal, then 0^k and 1^k would also appear for all k, thus it would not be balanced.

Definition

The discrepancy of an infinite word $\mathbf{w} \in \mathcal{A}^{\mathbb{N}}$ is defined as

$$\limsup_{i \in \mathcal{A}, p \text{ prefix of } \mathbf{w}} |f_i \cdot |p| - |p|_i|.$$

where f_i is the frequency of the letter $i \in A$, if it exists :

$$f_i = \lim_{p \text{ prefix of } \mathbf{w}} \frac{|\mathbf{p}|_i}{|\mathbf{p}|}$$

w is balanced \iff **w** has finite discrepancy \iff **w** stays at bounded distance from the euclidean line of direction (f_0, f_1)

$$\mathrm{L}_w(4)=\{\qquad,\qquad,\qquad,\qquad,\qquad\}$$

п	$p_w(n)$
0	1
1	2
2	3
3	4
4	5

$$L_w(4) = \{0001, \dots, \dots, \dots\}$$

n	$p_w(n)$
0	1
1	2
2	3
3	4
4	5

$$L_w(4) = \{0001, 0010, \dots, \dots\}$$

п	$p_w(n)$
0	1
1	2
2	3
3	4
4	5

$$L_w(4) = \{0001, 0010, 0100, \dots, \}$$

n	$p_w(n)$
0	1
1	2
2	3
3	4
4	5

$$L_w(4) = \{0001, 0010, 0100, 1000, \dots\}$$

n	$p_w(n)$
0	1
1	2
2	3
3	4
4	5

$$\mathrm{L}_w(4) = \{0001, 0010, 0100, 1000, \dots\}$$

n	$p_w(n)$
0	1
1	2
2	3
3	4
4	5

$$\mathrm{L}_w(4) = \{0001, 0010, 0100, 1000, \dots\}$$

n	$p_w(n)$
0	1
1	2
2	3
3	4
4	5

w = 00010001000100100010001000100010010001001001

$$L_w(4) = \{0001, 0010, 0100, 1000, \dots\}$$

n	$p_w(n)$
0	1
1	2
2	3
3	4
4	5

$$L_w(4) = \{0001, 0010, 0100, 1000, \dots\}$$

n	$p_w(n)$
0	1
1	2
2	3
3	4
4	5

$$L_w(4) = \{0001, 0010, 0100, 1000, \dots\}$$

n	$p_w(n)$
0	1
1	2
2	3
3	4
4	5

$$L_w(4) = \{0001, 0010, 0100, 1000, \dots\}$$

n	$p_w(n)$
0	1
1	2
2	3
3	4
4	5

$$L_w(4) = \{0001, 0010, 0100, 1000, \dots\}$$

n	$p_w(n)$
0	1
1	2
2	3
3	4
4	5

 $\mathrm{L}_w(4) = \{0001, 0010, 0100, 1000, 1001\}$

n	$p_w(n)$
0	1
1	2
2	3
3	4
4	5

 $\mathrm{L}_w(4) = \{0001, 0010, 0100, 1000, 1001\}$

n	$p_w(n)$
0	1
1	2
2	3
3	4
4	5

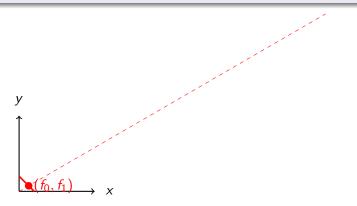
 $\mathrm{L}_w(4) = \{0001, 0010, 0100, 1000, 1001\}$

n	$p_w(n)$
0	1
1	2
2	3
3	4
4	5

Let
$$\Delta_d = \{(f_1, f_2, \dots, f_d) \in \mathbb{R}^d_+ : f_1 + f_2 + \dots + f_d = 1\}.$$

Question (updated)

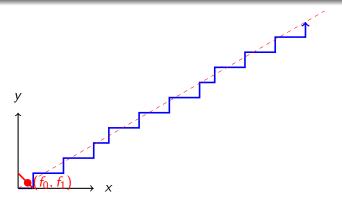
Given a vector $(f_1, f_2, \dots, f_d) \in \Delta_d$, can we construct an infinite word \mathbf{w} on the alphabet $\mathcal{A} = \{1, 2, \dots, d\}$ such that the frequency of each letter $i \in \mathcal{A}$ exists and is equal to f_i , \mathbf{w} is balanced and has a linear factor complexity ?



Let
$$\Delta_d = \{(f_1, f_2, \dots, f_d) \in \mathbb{R}^d_+ : f_1 + f_2 + \dots + f_d = 1\}.$$

Question (updated)

Given a vector $(f_1, f_2, \dots, f_d) \in \Delta_d$, can we construct an infinite word \mathbf{w} on the alphabet $\mathcal{A} = \{1, 2, \dots, d\}$ such that the frequency of each letter $i \in \mathcal{A}$ exists and is equal to f_i , \mathbf{w} is balanced and has a linear factor complexity ?



0100100101001001001001001001001...

Answer for d = 2: Sturmian words

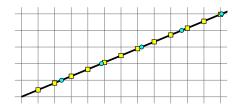
Proposition

Sturmian words are 1-balanced and satisfy p(n) = n + 1.

Sturmian word are also obtained from coding of rotations :

$$w_n = \left\{ egin{array}{cc} 1 & ext{if } (lpha + neta) \mod 1 \in [0,eta[\ 0 & ext{else} \end{array}
ight.$$

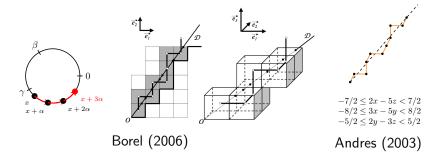
for some $\alpha, \beta \in [0, 1[$ or from the cutting sequence of a line :



Possible answers for d > 2

Typical answers to this question are :

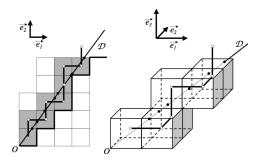
	$\forall v \in \mathbb{R}^d_+$	<i>p</i> (<i>n</i>) is linear	Balanced
Coding of Rotations	Yes	Yes	No
Coding of Interval Exchange Tr.	Yes	Yes	No
Billiard words	Yes	No	Yes
E. Andres discrete lines	Yes	No	Yes



Factor Complexity of the Billiard word

Theorem (Baryshnikov, 1995; Bédaride, 2003)

If both the direction $(\alpha_1, \alpha_2, \alpha_3)$ and $(\alpha_1^{-1}, \alpha_2^{-1}, \alpha_3^{-1})$ are \mathbb{Q} independent, the number of factors appearing in the Billiard word in a cube is exactly $p(n) = n^2 + n + 1$.



Source of image : J.-P. Borel, Complexity of Degenerated Three Dimensional Billiard Words, Developments in Language Theory 4036 (2006) 386-396.

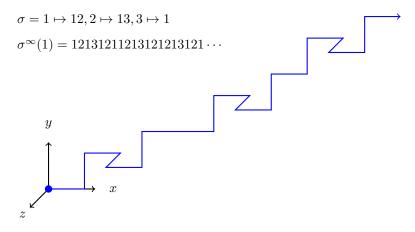
Sébastien Labbé (LIAFA)

Complexity of ARP sequences

Hope : Tribonacci Example from Rauzy (1982)

The Tribonacci word is an infinite word over $\{1, 2, 3\}$ containing 2n + 1 factors of length *n* and is balanced.

Can we generalize this to any 3D directions?



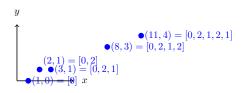
Continued fractions

Let
$$\alpha = \frac{\sqrt{3}-1}{2} = 0.36602540 \cdots$$
. We have
 $\alpha = 0 + \frac{1}{2 + \frac{1}{1 + \frac{1}{2 + \frac{1}{1 + \cdots}}}} = [0; 2, 1, 2, 1, 2, 1, \cdots]$

The convergents p_n/q_n are

$$0, \frac{1}{2}, \frac{1}{3}, \frac{3}{8}, \frac{4}{11}, \frac{11}{30}, \frac{15}{41}, \frac{41}{112}, \frac{56}{153}, \frac{153}{418}, \frac{209}{571}, \frac{571}{1560}, \frac{780}{2131}, \cdots$$

 $\bullet(30,11) = [0,2,1,2,1,2]$



Continued fractions : matrices from convergents

With

$$L = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right) \qquad \text{and} \qquad R = \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right)$$

the convergents can be obtained as

$$\begin{pmatrix} q_0 \\ p_0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = R^0 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} q_1 \\ p_1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} = R^0 L^2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} q_2 \\ p_2 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} = R^0 L^2 R^1 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} q_3 \\ p_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 3 \end{pmatrix} = R^0 L^2 R^1 L^2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

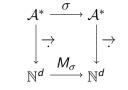
$$\begin{pmatrix} q_4 \\ p_4 \end{pmatrix} = \begin{pmatrix} 11 \\ 4 \end{pmatrix} = R^0 L^2 R^1 L^2 R^1 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} q_5 \\ p_5 \end{pmatrix} = \begin{pmatrix} 30 \\ 11 \end{pmatrix} = R^0 L^2 R^1 L^2 R^1 L^2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Morphisms and incidence matrices

A morphism is a function $\sigma : \mathcal{A}^* \to \mathcal{A}^*$ such that $\sigma(uv) = \sigma(u)\sigma(v)$ for all $u, v \in \mathcal{A}^*$.

The incidence matrix M_{σ} of a morphism σ is the unique matrix over the non negative integers such that, for all $u \in A^*$:



$$M_{\sigma}(\overrightarrow{u}) = \overrightarrow{\sigma(u)}.$$

Example.

$$\sigma = \begin{array}{c} 0 \mapsto 0100111\\ 1 \mapsto 101 \end{array} \qquad \qquad M_{\sigma} = \left(\begin{array}{c} 3 & 1\\ 4 & 2 \end{array}\right)$$

Continued fractions : substitutions from matrices

With

$$L = egin{array}{ccc} 0 \mapsto 0 \ 1 \mapsto 01 \end{array} ext{ and } R = egin{array}{ccc} 0 \mapsto 10 \ 1 \mapsto 1 \end{array}$$

the convergents can be transformed into finite sequences over \mathcal{A} :

 $w_0 = R^0(0) = 0$ $w_1 = R^0 L^2(1) = 001$ $w_2 = R^0 L^2 R^1(0) = 0010$ $w_3 = R^0 L^2 R^1 L^2(1) = 0010010001$ $w_4 = R^0 L^2 R^1 L^2 R^1(0) = 0010001001001$

Available in Sage since December 2009 :

```
sage: R = WordMorphism('0->01,1->1')
sage: L = WordMorphism('0->0,1->01')
sage: w5 = words.s_adic([L,L,R,L,L,R,L,L], '1')
sage: print w5
00010001000100100010001000100010001001
```

Generalize the Tribonacci word to any $v \in \mathbb{R}^3_+$ using multidimensional continued fractions algorithms and *S*-adic sequences.

There are other motivations for this approach :

- Study *S*-adic sequences, in the perspective of the *S*-adic conjecture concerning factor complexity.
- Study multidimensional continued fractions algorithms from substitutions and combinatorics on words point of view.
- Extend Pisot conjecture and Rauzy fractals (usually defined for fixed point of morphisms) to S-adic sequences.

2 Multidimensional Euclidean Algorithm

- 3 Result on factor complexity
- 4 Future work

Continued fractions : from Euclid Algorithm

With

$$L = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right) \qquad \text{and} \qquad R = \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right)$$

the execution of Euclid Algorithm appears as

$$\begin{pmatrix} 30\\11 \end{pmatrix} = L^2 R^1 L^2 R^1 L^2 \begin{pmatrix} 0\\1 \end{pmatrix}$$

$$\begin{pmatrix} 8\\11 \end{pmatrix} = R^1 L^2 R^1 L^2 \begin{pmatrix} 0\\1 \end{pmatrix}$$

$$\begin{pmatrix} 8\\3 \end{pmatrix} = L^2 R^1 L^2 \begin{pmatrix} 0\\1 \end{pmatrix}$$

$$\begin{pmatrix} 2\\3 \end{pmatrix} = R^1 L^2 \begin{pmatrix} 0\\1 \end{pmatrix}$$

$$\begin{pmatrix} 2\\1 \end{pmatrix} = L^2 \begin{pmatrix} 0\\1 \end{pmatrix}$$

Brun's Algorithm : Subtract the second largest to the largest.

(7,4,6)
ightarrow (1,4,6)
ightarrow (1,4,2)
ightarrow (1,2,2)
ightarrow (1,0,2)
ightarrow (1,0,1)
ightarrow (0,0,1).

Brun's Algorithm : Subtract the second largest to the largest. (7,4,6) → (1,4,6) → (1,4,2) → (1,2,2) → (1,0,2) → (1,0,1) → (0,0,1). Selmer's Algorithm : Subtract the smallest to the largest. (7,4,6) → (3,4,6) → (3,4,3) → (3,1,3) → (2,1,3) → (2,1,2) → (1,1,2) → (1,1,1) → (0,1,1) → (0,0,1)

Brun's Algorithm : Subtract the second largest to the largest.

(7,4,6)
ightarrow (1,4,6)
ightarrow (1,4,2)
ightarrow (1,2,2)
ightarrow (1,0,2)
ightarrow (1,0,1)
ightarrow (0,0,1).

Selmer's Algorithm : Subtract the smallest to the largest.

 $\begin{array}{c} (7,4,6) \rightarrow (3,4,6) \rightarrow (3,4,3) \rightarrow (3,1,3) \rightarrow (2,1,3) \rightarrow (2,1,2) \rightarrow (1,1,2) \\ \rightarrow (1,1,1) \rightarrow (0,1,1) \rightarrow (0,0,1) \end{array}$

Poincaré's Algorithm : Subtract the smallest to the mid and the mid to the largest.

$$(7,4,6) \rightarrow (1,4,2) \rightarrow (1,2,1) \rightarrow (1,1,0) \rightarrow (1,0,0)$$

Brun's Algorithm : Subtract the second largest to the largest.

(7,4,6)
ightarrow (1,4,6)
ightarrow (1,4,2)
ightarrow (1,2,2)
ightarrow (1,0,2)
ightarrow (1,0,1)
ightarrow (0,0,1).

Selmer's Algorithm : Subtract the smallest to the largest.

 $(7,4,6) \rightarrow (3,4,6) \rightarrow (3,4,3) \rightarrow (3,1,3) \rightarrow (2,1,3) \rightarrow (2,1,2) \rightarrow (1,1,2) \rightarrow (1,1,1) \rightarrow (0,1,1) \rightarrow (0,0,1)$

Poincaré's Algorithm : Subtract the smallest to the mid and the mid to the largest.

$$(7,4,6) \rightarrow (1,4,2) \rightarrow (1,2,1) \rightarrow (1,1,0) \rightarrow (1,0,0)$$

Arnoux-Rauzy's Algorithm : Subtract the sum of the two smallest to the largest (not always possible).

 $(7,4,6) \rightarrow \text{Impossible}$

Brun's Algorithm : Subtract the second largest to the largest.

(7,4,6)
ightarrow (1,4,6)
ightarrow (1,4,2)
ightarrow (1,2,2)
ightarrow (1,0,2)
ightarrow (1,0,1)
ightarrow (0,0,1).

Selmer's Algorithm : Subtract the smallest to the largest.

 $\begin{array}{c} (7,4,6) \rightarrow (3,4,6) \rightarrow (3,4,3) \rightarrow (3,1,3) \rightarrow (2,1,3) \rightarrow (2,1,2) \rightarrow (1,1,2) \\ \rightarrow (1,1,1) \rightarrow (0,1,1) \rightarrow (0,0,1) \end{array}$

Poincaré's Algorithm : Subtract the smallest to the mid and the mid to the largest.

$$(7,4,6) \rightarrow (1,4,2) \rightarrow (1,2,1) \rightarrow (1,1,0) \rightarrow (1,0,0)$$

Arnoux-Rauzy's Algorithm : Subtract the sum of the two smallest to the largest (not always possible).

$$(7, 4, 6) \rightarrow \mathsf{Impossible}$$

Fully subtractive's Algorithm : Subtract the smallest to the other two.

$$(7,4,6) \rightarrow (3,4,2) \rightarrow (1,2,2) \rightarrow (1,1,1) \rightarrow (1,0,0)$$

	Min	Mean	Max	Std
Arnoux-Rauzy (AR)	0.6000	0.8922	1.200	0.09953
Fully subtractive	0.5000	6.047	14.21	4.385
Selmer	0.5000	2.151	12.75	2.076
Brun	0.5000	1.100	2.000	0.2625
Poincaré	0.5000	2.476	11.13	2.245
AR-Fully subtractive	0.5000	1.154	4.000	0.3759
AR-Selmer	0.5000	0.9991	1.600	0.1429
AR-Brun	0.5000	0.9169	1.520	0.1170
AR-Poincaré	0.5000	0.9066	1.320	0.1079

TABLE: Statistics for the discrepancy for strictly positive integer vectors (a_1, a_2, a_3) such that $a_1 + a_2 + a_3 = N$ and N = 100.

Arnoux-Rauzy words : S-adic representation

Let $\mathcal{A} = \{1, 2, 3\}$, $\mathcal{S} = \{\sigma_i : i \in \mathcal{A}\}$ where

 $\sigma_i: i \mapsto i, j \mapsto ji \text{ for } j \notin \mathcal{A}.$

An Arnoux-Rauzy word can be represented as an S-adic sequence

$$\mathbf{w} = \lim_{n \to \infty} (\sigma_{i_0} \circ \sigma_{i_1} \circ \cdots \circ \sigma_{i_n})(1).$$

where every letter in \mathcal{A} occurs infinitely often in $(i_m)_{m\geq 0}$. The sequence $(i_m)_{m\geq 0} \in \mathcal{A}^{\mathbb{N}}$ is called the *S*-directive sequence.

Pierre Arnoux and Gérard Rauzy. Représentation géométrique de suites de complexité 2n+1. Bull. Soc. Math. France, 119(2) :199–215, 1991.

J. Cassaigne, S. Ferenczi, and L. Q. Zamboni. Imbalances in Arnoux-Rauzy sequences. *Ann. Inst. Fourier (Grenoble)*, 50(4) :1265–1276, 2000.

Sébastien Labbé (LIAFA)

Let **w** be an Arnoux-Rauzy word with S-directive sequence $(i_m)_{m\geq 0}$.

Theorem (Berthé, Cassaigne, Steiner, 2012)

If the weak partial quotients are bounded by h, i.e., if we do not have $i_m = i_{m+1} = \cdots = i_{m+h}$ for any $m \ge 0$, then **w** is (2h + 1)-balanced.

Theorem (Berthé, Cassaigne, Steiner, 2012)

Let X be the set of words {1121, 1122, 12121, 12122} together with all the words that are obtained from one of these four words by a permutation of the letters 1, 2, and 3. If $(i_m)_{m\geq 0}$ contains no factor in X, then w is 2-balanced.

Valérie Berthé, Julien Cassaigne, and Wolfgang Steiner. Balance properties of arnoux-rauzy words. *arXiv* :1212.5106, December 2012.

2 Multidimensional Euclidean Algorithm

3 Result on factor complexity

4 Future work

Arnoux-Rauzy and Poincaré substitutions

For all
$$\{i, j, k\} = \{1, 2, 3\}$$
, we consider
 $\pi_{jk} : i \mapsto ijk, j \mapsto jk, k \mapsto k$ (Poincaré substitutions)
 $\alpha_k : i \mapsto ik, j \mapsto jk, k \mapsto k$ (Arnoux-Rauzy substitutions)

Namely,

$$\pi_{23} = \begin{cases} 1 \mapsto 123 \\ 2 \mapsto 23 \\ 3 \mapsto 3 \end{cases}, \ \pi_{13} = \begin{cases} 1 \mapsto 13 \\ 2 \mapsto 213 \\ 3 \mapsto 3 \end{cases}, \ \alpha_3 = \begin{cases} 1 \mapsto 13 \\ 2 \mapsto 23 \\ 3 \mapsto 3 \end{cases}, \\ \pi_{12} = \begin{cases} 1 \mapsto 12 \\ 2 \mapsto 2 \\ 3 \mapsto 312 \end{cases}, \ \pi_{32} = \begin{cases} 1 \mapsto 132 \\ 2 \mapsto 23 \\ 3 \mapsto 32 \end{cases}, \ \alpha_2 = \begin{cases} 1 \mapsto 12 \\ 2 \mapsto 2 \\ 3 \mapsto 32 \end{cases}, \\ \pi_{31} = \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 231 \\ 3 \mapsto 31 \end{cases}, \ \pi_{21} = \begin{cases} 1 \mapsto 13 \\ 2 \mapsto 213 \\ 3 \mapsto 32 \end{cases}, \ \alpha_1 = \begin{cases} 1 \mapsto 13 \\ 2 \mapsto 23 \\ 3 \mapsto 32 \\ 1 \mapsto 1 \\ 2 \mapsto 21 \\ 3 \mapsto 31 \end{cases}.$$

Quadratic complexity for ARP sequences

In general, it is possible that p(n+1) - p(n) > 3 for some values of n. Let

$$s = \pi_{23}\pi_{23}\pi_{13}\pi_{23}\pi_{23}\alpha_1\alpha_3\alpha_2(1).$$

Indeed,

$$p_s(n) = (1, 3, 5, 8, 11, 15, 19, 23, 27, 31, 35, 38, \cdots)$$

In general, it is possible that p(n+1) - p(n) > 3 for some values of n. Let

$$s = \pi_{23}\pi_{23}\pi_{13}\pi_{23}\pi_{23}\alpha_1\alpha_3\alpha_2(1).$$

Indeed,

$$p_s(n) = (1, 3, 5, 8, 11, 15, 19, 23, 27, 31, 35, 38, \cdots)$$

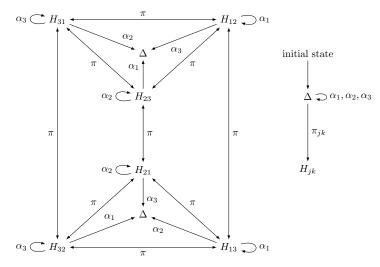
Even worse, the fixed point of

$$\pi_{13}\pi_{23}: \begin{cases} 1 \mapsto 132133\\ 2 \mapsto 2133\\ 3 \mapsto 3 \end{cases}$$

starting with letter 1 has a quadratic factor complexity.

Language of Arnoux-Rauzy Poincaré algorithm

Deterministic and minimized automaton recognizing the language $\mathcal{L}\subset\mathcal{S}^\mathbb{N}$ of ARP algorithm :



Sébastien Labbé (LIAFA)

Theorem (Berthé, L., 2013)

For (Lebesgue) almost all $(f_1, f_2, f_3) \in \Delta_3$, there exists

$$\mathbf{w} = \lim_{n \to \infty} \sigma_1 \circ \sigma_2 \circ \cdots \circ \sigma_n(\mathbf{a}),$$

such that the frequency of letter *i* in **w** is f_i and where $a \in \{1, 2, 3\}$ and $(\sigma_i)_{i \ge 0} \in \mathcal{L} \subset S^{\mathbb{N}}$.

Theorem (Berthé, L., 2013)

The factor complexity of \mathbf{w} is such that

- $p(n+1) p(n) \in \{2,3\}$ and
- $\limsup_{n\to\infty} \frac{p(n)}{n} \le \frac{5}{2} < 3.$

Theorem (Boshernitzan, 1984)

A minimal symbolic system (X, S) such that $\limsup_{n\to\infty} \frac{p(n)}{n} < 3$ is uniquely ergodic.

Theorem (see CANT, Prop. 7.2.10)

A symbolic system (X_x, S) is uniquely ergodic if, and only if, x has uniform frequencies.

Sébastien Ferenczi and Thierry Monteil. Infinite words with uniform frequencies, and invariant measures. In *Combinatorics, automata and number theory*, volume 135 of *Encyclopedia Math. Appl.*, pages 373–409. Cambridge Univ. Press, Cambridge, 2010.

Corollary

The frequencies of factors and letters in w exist.

Sébastien Labbé (LIAFA)

Complexity of ARP sequences

June 12th 2013 33 / 47

Idea of the proof on complexity

Let p(n) be the factor complexity function of **w**. Let s(n) and b(n) be its sequences of finite differences of order 1 and 2 :

$$p(n) = 1, 3, 5, 7, 9, 11, 14, 17, 20, 22, 24, 26, 28,$$

$$s(n) = p(n+1) - p(n) = 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2,$$

$$b(n) = s(n+1) - s(n) = 0, 0, 0, 0, +1, 0, 0, -1, 0, 0, 0,$$

Let p(n) be the factor complexity function of **w**. Let s(n) and b(n) be its sequences of finite differences of order 1 and 2 :

$$p(n) = 1, 3, 5, 7, 9, 11, 14, 17, 20, 22, 24, 26, 28,$$

$$s(n) = p(n+1) - p(n) = 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2,$$

$$b(n) = s(n+1) - s(n) = 0, 0, 0, 0, +1, 0, 0, -1, 0, 0, 0,$$

Functions s and b are related to special and bispecial factors of w.

Theorem (Cassaigne, 1997; Cassaigne, Nicolas, 2010)
Let
$$\mathbf{u} \in A^{\mathbb{N}}$$
 be a infinite [recurrent] word. Then, for all $n \in \mathbb{N}$:
 $s(n) = \sum_{w \in RS_n(\mathbf{u})} (d^+(w) - 1)$ and $b(n) = \sum_{w \in BS_n(\mathbf{u})} m(w)$

Let **u** be an infinite word $L(\mathbf{u})$ be its language. Right extensions and right valence :

$$E^+(w) = \{x \in \mathcal{A} | wx \in L(\mathbf{u})\}$$
 $d^+(w) = \operatorname{Card} E^+(w).$

Left extensions and left valence :

$$E^{-}(w) = \{x \in \mathcal{A} | xw \in L(\mathbf{u})\}$$
 $d^{-}(w) = \operatorname{Card} E^{-}(w).$

A factor w is

- right special if $d^+(w) \ge 2$,
- left special if $d^-(w) \ge 2$,
- bispecial if it is left and right special.

The extension type of a factor w of \mathbf{u} is

$$E(w) = \{(a, b) \in \mathcal{A} \times \mathcal{A} | awb \in L(\mathbf{u})\}.$$

The bilateral multiplicity of a factor w is

$$m(w) = \operatorname{Card} E(w) - d^{-}(w) - d^{+}(w) + 1.$$

A bispecial factor is said

weak if m(w) < 0, neutral if m(w) = 0, strong if m(w) > 0.

Examples of extension types E(w) of bispecial factors w

Examples of extension types E(w) of bispecial factors w

A bispecial factor w is ordinary if

 $E(w) \subseteq (\{a\} \times A) \cup (A \times \{b\})$ for a pair of letters $(a, b) \in E(w)$.

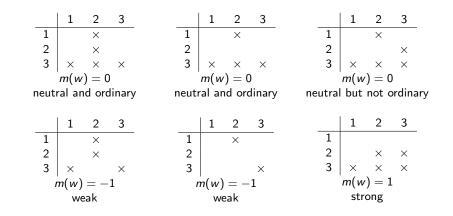
Lemma

If a bispecial factor is ordinary, then it is neutral.

On a binary alphabet, the reciprocal also holds.

Sébastien Labbé (LIAFA)

Examples of extension types E(w) of bispecial factors w



Life and history of a bispecial factor

- Some synchronization lemmas allows to define uniquely the antecedent w_{k+1} of a (bispecial) factor w_k = sσ_k(w_{k+1})p.
- w_k is an extended image of w_{k+1}
- We always have $|w_{k+1}| < |w_k|$.
- The history of w is $\sigma_0 \sigma_1 \cdots \sigma_n$.
- The life of w is $(w_k)_{0 \le k \le n}$.

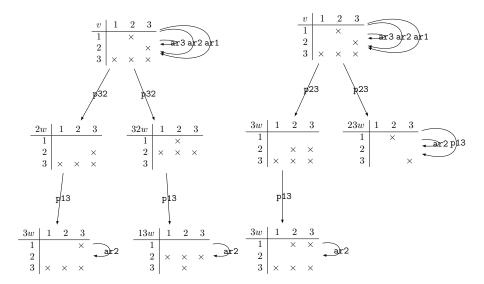
- w_{k+1} has only one extended image w_k under an Arnoux-Rauzy substitution.
- *w*_{*k*+1} has one or two extended images under Poincaré substitution.

Lemma

Let $\mathbf{u} \in \mathcal{A}^* \cup \mathcal{A}^{\mathbb{N}}$ be such that all letters of \mathcal{A} appear as proper factors of \mathbf{u} . Considered as a bispecial factor of the language of the word $\alpha_k(\mathbf{u})$, the empty word ε is ordinary. Considered as a bispecial factor of the language of the word $\pi_{ik}(\mathbf{u})$, the empty word ε is neutral but not ordinary :

$$E_{\alpha_k(\mathbf{u})}(\varepsilon) = \frac{\begin{vmatrix} i & j & k \\ i & & \times \\ j & & \times \\ k & \times & \times & \times \end{vmatrix}} \quad and \quad E_{\pi_{jk}(\mathbf{u})}(\varepsilon) = \frac{\begin{vmatrix} i & j & k \\ i & & \times \\ j & & \times \\ k & \times & \times & \times \end{vmatrix}}.$$

Giving birth to pair of bispecials words



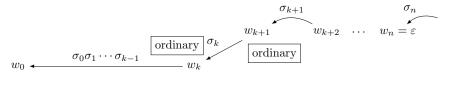
Lemma

Let $\mathbf{u} = \lim_{n \to \infty} \sigma_0 \sigma_1 \cdots \sigma_n(a_n)$. Let w be a bispecial factor of \mathbf{u} such that $n = \operatorname{age}(w)$ and $\lim_{m \to \infty} \sigma_{n+1} \sigma_{n+2} \cdots \sigma_m(a_m)$ contains all letters of \mathcal{A} as proper factors. Let z be the other bispecial factor of the same age as w if it exists. Then the history $\sigma_0 \sigma_1 \cdots \sigma_n$ of w determines the left valence, multiplicity and extension type of w and z according to the following table.

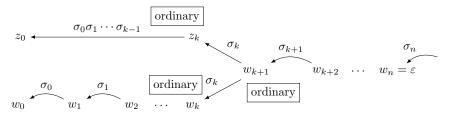
$\sigma_0\sigma_1\cdots\sigma_n\in$	d ⁻ (w)	m(w)	ordinary	$d^{-}(z)$	m(z)	ordinary
$\mathcal{S}^*_lpha \mathcal{S}_lpha$	3	0	yes			
${\cal S}^*_{lpha}{\cal S}_{\pi}$	3	0	no			
$\mathcal{S}^* \pi_{jk} \mathcal{S}^*_{lpha} \{ lpha_k \}$	2	0	yes			
$\mathcal{S}^* \pi_{jk} \mathcal{S}^*_{\alpha} \{ \alpha_i, \alpha_j \}$	2	0	yes	2	0	yes
$\mathcal{S}^* \pi_{jk} \mathcal{S}^*_{lpha} \{ \pi_{ji}, \pi_{ki}, \pi_{ij}, \pi_{kj} \}$	2	0	yes	2	0	yes
$\mathcal{S}^* \pi_{jk} \mathcal{S}^*_{lpha} \{ \pi_{ik}, \pi_{jk} \}$	2	+1	no	2	-1	no

Typical life of ordinary bispecial factors

If
$$\sigma_0 \sigma_1 \cdots \sigma_n \in \mathcal{S}^*_{\alpha} \{ \alpha_k \} \cup \mathcal{S}^* \{ \pi_{ij}, \pi_{kj}, \pi_{ji}, \pi_{ki} \} \mathcal{S}^*_{\alpha} \{ \alpha_k \}$$
:



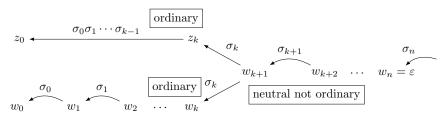
If $\sigma_0 \sigma_1 \cdots \sigma_n \in \mathcal{S}^* \{ \pi_{ik}, \pi_{jk} \} \mathcal{S}^*_{\alpha} \{ \alpha_k \}$:



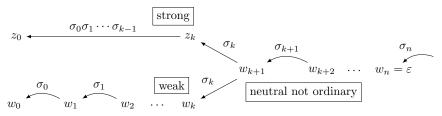
Sébastien Labbé (LIAFA)

Typical life of neutral not ordinary bispecial factors

If $\sigma_0 \sigma_1 \cdots \sigma_n \in \mathcal{S}^* \{ \pi_{ij}, \pi_{kj}, \pi_{ji}, \pi_{ki} \} \mathcal{S}^*_{\alpha} \{ \pi_{jk} \}$:

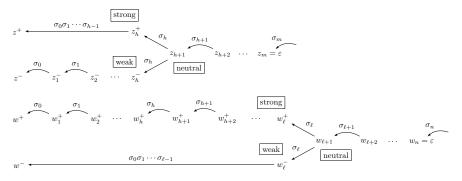


If $\sigma_0 \sigma_1 \cdots \sigma_n \in \mathcal{S}^* \{ \pi_{ik}, \pi_{jk} \} \mathcal{S}^*_{\alpha} \{ \pi_{jk} \}$:



Sébastien Labbé (LIAFA)

The proof consists in a complete characterization of the life of bispecial factors (strong, neutral and weak), not all of them being ordinary. Lifes of two pairs of strong and weak bispecial factors : z^+ , z^- and w^+ , w^- .



2 Multidimensional Euclidean Algorithm

3 Result on factor complexity

- Compute, if it exists, the invariant measure associated to the **Arnoux-Rauzy-Poincaré** algorithm.
- Find under which conditions the **Brun** and **Arnoux-Rauzy-Poincaré** algorithms lead to bounded balance sequences.
- Compute the factor complexity of *S*-adic sequences obtain using **Brun** algorithm.
- Study ergodic properties of those previous fusion algorithms.