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Sébastien Labbé
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Sébastien Labbé (LIAFA) Double Squares April 4th 2013 2 / 58



Plan

1 Tilings

2 Boundary words

3 Number of regular tilings

4 At most two regular square tilings

5 Fibonacci and Christoffel tiles are double squares

6 Reduction (and construction) of double square tiles

7 Open problems
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Tilings

A set S = {P1,P2, . . . ,Pk} of polyominoes tiles the plane if there exists a
partition of Z2 into translated copies of Pi .

For example, the set S = { , , } tiles the plane :
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Types of tilings

A tiling periodic where the rotations are allowed :

A tiling by translation :

A regular tiling :
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Problème du pavage

Given a set S of polygons,
is there a tiling of the plane by S ?

One way to anwer is to find a periodic tiling of the plane.
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Theorem (Berger, 1961)

There is a set S which tiles the plane, but not in a periodic way.

The first example found by Berger contains |S | = 20426 tiles.
In 1974, Penrose provided an example made of two polygons :

Theorem (Berger, 1961)

The Tiling Problem is not decidable.
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Polyomino

The word polyomino (Golomb, 1952) comes from domino. The domino is
made of two squares, a polyomino is made of many.

Monomino Domino
Triominos Tétrominos

Pentaminos I Y L N X W F V T U Z P

Donald Knuth (Dancing links, 2000) was interested by
the tiling problem by polyominoes and more generally by
the exact cover problem. This method allows to solve a
sudoku.
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The Tiling Problem by polyominoes is not decidable

By association of a set of polyominoes with a set of polygons,

,

Golomb obtains the following result :

Theorem (Golomb, 1970)

The Tiling Problem by a set of polyominoes is also not decidable.
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Tiling by translation by one polyomino is decidable

Theorem (Wijshoff, van Leuveen, 1984)

If a polyomino tiles the plane by translation, then it tiles the plane
regularly.

=⇒

Then, the tiling problem where the set S contains only one polyomino is
decidable.
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Does a polyomino tile the plane by translation ?
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Sébastien Labbé (LIAFA) Double Squares April 4th 2013 11 / 58



Does a polyomino tile the plane by translation ?
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Beauquier-Nivat

Conway criterion, 1980 : a sufficient condition for a polyomino to tile the
plane.

Theorem (Beauquier, Nivat, 1991)

A polyomino tiles the plane by translation if and only if its boundary word
factorize into XY X̂ Ŷ or XYZ X̂ Ŷ Ẑ .

X

Ŷ

X̂

Y

tuile carrée

X

Ŷ

X̂

Y

Ẑ

Z

tuile hexagonale
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Introduction
The tiling by translation problem

Generation of squares tiles
Double Squares

M.C. Escher
Escher Tilings
Discrete figures

Figure: Hexagonal tiling

Ariane Garon Words2009:Palindromes and local periodicity

Maurits Cornelis Escher (1898-1972). Hexagonal tiling. Square tiling.
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Tuile carrée

Recent artwork of Marc Dumont.
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Hexagonal tile
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Representation of a polyomino by its boundary

Σ = Z4 = {0, 1, 2, 3}
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Results on polyominoes using boundary word

Many statistics on polyominoes can be computed efficiently from the
boundary word including :

area,

moment of inertia (thus center of gravity),

size of projection,

intersection,

digital convexity,

whether it tiles the plane by translations.

See publications of S. Brlek, A. Lacasse and X. Provençal and their
coauthors.

Theorem (Brlek, Koskas, Provençal, 2011)

There exists a linear time and space algorithm for detecting path
intersection in Zd .
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Why {0, 1, 2, 3} is the best alphabet for paths ?

The first differences sequence of w ∈ (Z4)∗

∆w = (w2 − w1) · (w3 − w2) · · · (wn − wn−1).

represents the sequence of turns of the path.

1

02

3 0

01

11

1 2 2 2

2

3

w = 01012223211

00
0

1

1

11

3
33

∆w = 1311001330

We also consider ∆[w ] well defined on the conjugacy classes :

∆[w ] = (w2−w1) · (w3−w2) · · · (wn−wn−1) · (w1−wn) = ∆w · (w1−wn).
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Turning number

The turning number of a path w is T (w) = |∆w |1−|∆w |3
4 and corresponds

to its total curvature divided by 2π (Wikipedia). We have that

T (w) = −T (ŵ) for all path w ∈ Σ∗

T ([w ]) = ±1 for all simple and closed path w .

For example,

0

01

11

1 2 2 2

2
3

w = 01012223211

00
0

1

1

11

3
33

∆w = 1311001330

2

23

33

3 0 0 0

0
1

ŵ = 33010003232

00
0

3

3

33

1
11

∆ŵ = 0113003313

T (w) = 1/4

T (ŵ) = −1/4
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T (ŵ) = −1/4
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Composition of tiles

The factorization ABÂB̂ of a square S allows to define the substitution

ϕS : 0 7→ A, 1 7→ B, 2 7→ Â, 3 7→ B̂.

For any polyomino P having boundary w we define the composition

S ◦ P := ϕS(w).

S ◦ P =

Note : This is not commutative.

Definition

A polyomino Q is prime if Q = S ◦P implies that S or P is the unit square.
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Prime polyomino

A composed polyomino :

S
◦ X =

The X pentomino is prime :

◦ X = X ◦ = X
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Why prime polyominoes are interesting ?

Prime polyominoes are a subset of polyominoes that allows to reconstruct
every polyominoes with the composition rule.

Some questions are open :

Detect whether a polyomino is prime.

Find an algorithm that enumerate prime polyominoes.

Count prime polyominoes.

Is the growth rate the same or less than the growth rate of
polyominoes ?
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Does a polyomino tiles the plane by translation ?

Theorem (Brlek, Fédou, Provençal, 2009)

Determining if a polyomino is a square tile is decidable in linear time.

Theorem (Brlek, Fédou, Provençal, 2009)

Let P be a polyomino such that the length of the largest repeated pattern
UU is bounded by the square root of the perimeter. Determining if P is a
hexagonal tile is decidable in linear time from the boundary word.

A repeated pattern UU is the concatenation of two identical paths :

U

U
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Number of regular tilings of an hexagonal tile

A polyomino may have many regular tilings of the plane.

Example : A rectangle 1× 6 tiles the plane Z2 as an hexagon in 5 ways
and as a square in only one way.
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Number of regular tilings of a square tile

The Dumont tile have a second regular square tiling.

Could it contain more ?

Brlek, Dulucq, Fédou, Provençal conjectured in 2007 that a tile has at
most 2 square factorizations.
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Some double square tiles

A tile having two regular square tiling is called a double square.
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Double Square in Sage free software

Creation of a double square tile in Sage from the boundary word of a
known double square :

sage: from sage.combinat.double_square_tile import DoubleSquare

sage: DoubleSquare(words.christoffel_tile(4,7))

Double Square Tile

w0 = 03 w4 = 21

w1 = 0103010103010301010301030 w5 = 2321232321232123232123212

w2 = 10103010 w6 = 32321232

w3 = 1 w7 = 3

(|w0|, |w1|, |w2|, |w3|) = (2, 25, 8, 1)

(d0, d1, d2, d3) = (26, 10, 26, 10)

(n0, n1, n2, n3) = (0, 2, 0, 0)

DoubleSquare will be available in Sage soon :

http://trac.sagemath.org/sage_trac/ticket/13069
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Invariance under a rotation of 180 degrees

We observe that the Dumont square tile is invariant under a rotation of
180 degrees :

180o

=

but it is not the case for the following square tile :

180o

6=
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Invariance under a rotation of 180 degrees

X. Provençal and L. Vuillon conjectured in 2008 that if a polyomino is a
prime double square tile, then it is invariant under a rotation of 180

degrees.
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Motivation to study double squares

Let ABÂB̂ ≡ XY X̂ Ŷ be the factorizations of a double square tile. We
need to understand equations on words of the following form :

A B Â B̂

w0 w1 w2 w3 w4 w5 w6 w7 w0

X Y X̂ Ŷ

ŵ6 ŵ5

A

To study Hof, Knill, Simon Conjecture (1995), one need to study
equations on words of the form :

A B A B

Ã Ã B̃ B̃
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Hof, Knill, Simon Conjecture

We say that a morphism ϕ is in class P if there exists a palindrome p and
for every α ∈ Σ there exists a palindrome qα such that ϕ(α) = pqα.

Conjecture (Hof, Knill, Simon, 1995, rephrased by us in 2008)

Let ϕ be a primitive morphism such that u = ϕ(u) is a fixed point. Then,
the palindromic complexity of u is infinite if and only if there exists a
morphism ϕ′ in class P such that ϕ′(u) = u.

Proved in my master thesis (2008) for the binary alphabet and
uniform morphisms.

Proved by B. Tan in 2008 for the binary alphabet.

Still open for larger alphabet.

Sébastien Labbé (LIAFA) Double Squares April 4th 2013 33 / 58



Results

Theorem (Blondin Massé, Brlek, L., 2012)

A tile has at most 2 regular square tilings.

Theorem (Blondin Massé, Brlek, Garon, L., 2011)

Christoffel Tiles and Fibonacci Tiles are double squares.

Theorem (Blondin Massé, Garon, L., 2012)

Any double square tile can be constructed using two simple combinatorial
and invertible rules : swap and trim.

Theorem (Blondin Massé, Garon, L., 2012)

Any prime double square tile is invariant under a rotation of 180 degrees.
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Idea of the proof : at most 2 square factorizations

Lemma (Brlek, Fédou, Provençal, 2008)

The factorizations UV ÛV̂ ≡d1 XY X̂ Ŷ of a double square tile must
alternate, that is 0 < d1 < |U| < d1 + |X |.

Suppose that there is a triple square tile having the following boundary :

UV ÛV̂ ≡d1 XY X̂ Ŷ ≡d2 WZ Ŵ Ẑ .

d1

d2

U V Û V̂

X Y X̂ Ŷ

W Z Ŵ Ẑ
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Examples

Suppose that |U| = |V | = |X | = |Y | = |W | = |Z | = 3.

0

1 0 1 2 1 2 3 2 3 0 3

0

1

U V Û V̂

X Y X̂ Ŷ

W Z Ŵ Ẑ

If a third factorization WZ Ŵ Ẑ exists, then, 0 = 2 and 1 = 3 which is a
contradiction. Hence, there is no triple square tile of perimeter 12.

Although, there are words having more than two square factorizations. An
example of length 36 was provided by X. Provençal :

0 0 122 10012 21001 221 0 0 322 30032 23003 223

U V Û V̂

X Y X̂ Ŷ

W Z Ŵ Ẑ

Note that the factor 221003 is a closed path...
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example of length 36 was provided by X. Provençal :

0 0 122 10012 21001 221 0 0 322 30032 23003 223

U V Û V̂

X Y X̂ Ŷ

W Z Ŵ Ẑ

Note that the factor 221003 is a closed path...
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U V Û V̂

X Y X̂ Ŷ
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W Z Ŵ Ẑ
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W Z Ŵ Ẑ
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If a third factorization WZ Ŵ Ẑ exists, then, 0 = 2 and 1 = 3 which is a
contradiction. Hence, there is no triple square tile of perimeter 12.

Although, there are words having more than two square factorizations. An
example of length 36 was provided by X. Provençal :
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Note that the factor 221003 is a closed path...
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Turning number

X

Ŷ

X̂

Y Since a square tile determined a closed and
simple boundary, the turning number of XY X̂ Ŷ
must be ±1.

Lemma (Blondin-Massé, Brlek, Garon, L. 2010)

If XY X̂ Ŷ is the boundary word (positively oriented) of a square tile, then

∆[XY X̂ Ŷ ] = ∆X · 1 ·∆Y · 1 ·∆X̂ · 1 ·∆Ŷ · 1.
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Idea of the proof : at most 2 square factorizations

We get 12 positions where there must be a 1 in the first differences of the
boundary word :

d1

d2

x y

∆U1 ∆V1 ∆Û1 ∆V̂1

∆X1 ∆Y1 ∆X̂1 ∆Ŷ1

∆W1 ∆Z1 ∆Ŵ1 ∆Ẑ1

We show that there is a {1, 3}-alternating deduction path of odd length
between two 1 :

1→ 3→ 1→ 3→ 1→ 3 = 1

and we get the desired contradiction. Hence, if the turning number of a
boundary word is ±1, there can’t be a third square factorisation.
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Idea of the proof : at most 2 square factorizations

Theorem (Blondin Massé, Brlek, Garon, L. 2010)

A tile has at most 2 regular square tilings.

Reflexions : s1, s2, s3.
We have

I = (s1s3s2)2.

thus

s1 = s3s2s1s3s2.

x0

x1

x2

x3

x4

x5
x6

x7x8x9x10
x11

x12

x13

x14

x15

x16

x17

x18

x19
x20 x21 x22 x23

x24
x25

x26

x27

x28

x29

s1

s2

s3
1

1

1

1

1
1
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Plan

1 Tilings

2 Boundary words

3 Number of regular tilings

4 At most two regular square tilings

5 Fibonacci and Christoffel tiles are double squares

6 Reduction (and construction) of double square tiles

7 Open problems
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Fibonacci Tiles are double squares

Complete the sequence :

, , ,

,· · ·
sage: p = words.fibonacci_tile(2); print p

3230301030323212323032321210121232121010301012101030

sage: p.finite_differences().finite_differences()

word: 2022020220220202202022022020220202202202...

sage: words.FibonacciWord([2,0])

word: 2022020220220202202022022020220220202202...
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Fibonacci Tiles

Theorem (Blondin Massé, Brlek, L., Mendès France, 2011)

The limit ratio between the area of the n-th Fibonacci tile A(n) and the
area of its convex hull H(n) is

lim
n→∞

A(n)

H(n)
= 2−

√
2 = 0.58578643 · · ·

Theorem (Blondin Massé, Brlek, L., Mendès France, 2012)

The fractal dimension of the n-th Fibonacci tile is

d =
log(2 +

√
5)

log(1 +
√

2)
= 1.637938210 · · ·
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Christoffel Tiles are double squares

Let λ defined by

0 7→ 0301, 1 7→ 01, 2 7→ 2123, 3 7→ 23.

Let α = α + 2 ∈ Z4 for all α ∈ Z4.

Theorem (Blondin Massé, Brlek, Garon, L., 2011)

Let w = 0v1 ∈ {0, 1}∗.
w is a Christoffel word if and only if λ(ww) is a double square.

(0, 0)

(5, 3)

w = 00100101
λ(ww)
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Periods in the boundary of double square tiles

Let ABÂB̂ ≡ XY X̂ Ŷ be the factorizations of a double square tile.

A B Â B̂

w0 w1 w2 w3 w4 w5 w6 w7 w0

X Y X̂ Ŷ

ŵ6 ŵ5

A

In general

di = |wi−1|+ |wi+1| is a period of wi−1wiwi+1.

Hence we write

wi = (uivi )
ni ui where |uivi | = di .

Remark : ui and vi always exist even if |wi | < di . w0

w1

w2

w3
w4

w5

w6

w7
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Double Square in Sage free software

Double Square tile from the words (w0,w1,w2,w3) :

sage: from sage.combinat.double_square_tile import DoubleSquare

sage: DoubleSquare(([3,2], [3], [0,3], [0,1,0,3,0]))

Double Square Tile

w0 = 32 w4 = 10

w1 = 3 w5 = 1

w2 = 03 w6 = 21

w3 = 01030 w7 = 23212

(|w0|, |w1|, |w2|, |w3|) = (2, 1, 2, 5)

(d0, d1, d2, d3) = (6, 4, 6, 4)

(n0, n1, n2, n3) = (0, 0, 0, 1)
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The factor ui and vi

w0

w1

w2

w3

w4

w5

w6

w7u0

u1

u2

u3

u4

u5

u6
u7

v0

v1 v2

v3

v4

v5v6
v7
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trimi : removes a period in wi and wi+4

Let S = (w0,w1,w2,w3,w4,w5,w6,w7).

trim0(S) = ((u0v0)ni−1u0,w1,w2,w3, (u4v4)n4−1u4,w5,w6,w7)

w0

w1

w2

w3

w4

w5

w6

w7

S
w0

u1

v1
u1

w2
w3

w4

u5

v5
u5

w6w7

w0

u1

w2

w3

w4

u5

w6

w7

S′

S′ = trim1(S)

and its conjugates

shift(S) = (w1,w2,w3,w4,w5,w6,w7,w0),

trimi (S) = shift−i ◦ trim0 ◦ shifti (S),
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swapi : the curious involution

Let S = (w0,w1,w2,w3,w4,w5,w6,w7).

swap0(S) = (ŵ4, (v1u1)n1v1, ŵ6, (v3u3)n3v3, ŵ0, (v5u5)n5v5, ŵ2, (v7u7)n7v7)

w0

w1

w2

w3

w4

w5

w6

w7

S w0

w2

w4

w6

u1
u3

u5
u7

v1

v3

v5

v7

ŵ4

v1
ŵ6 v3

ŵ0

v5
ŵ2

v7

S′

S′ = swap0(S)

and its conjugates

shift(S) = (w1,w2,w3,w4,w5,w6,w7,w0),

swapi (S) = shift−i ◦ swap0 ◦ shifti (S),
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Theorem (Blondin Massé, Brlek, Garon, L.)

Every double square tile reduces to a square tile with trim and swap.

(ε,0, ε,1,
ε,2, ε,3)(ε,0,10,1,

ε,2,32,3)(03,0,10,1,
21,2,32,3)

(03,01030,10,1,
21,23212,32,3)

(03,01030,10,12101,
21,23212,32,30323)

(03,01030,10103010,1,
21,23212,32321232,3)

(01030323,03010,12101030,10121,
23212101,21232,30323212,32303)

trim2trim0trim1

trim3

swap1

trim1

t
r
im

3

sw
a
p
1

trim2
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Double Square in Sage free software

sage: D = DoubleSquare(words.christoffel_tile(4,7))

sage: D.reduction()

[’TRIM_1’, ’TRIM_1’, ’TRIM_2’, ’TRIM_1’, ’TRIM_0’, ’TRIM_2’]

sage: D.trim(1)

Double Square Tile

w0 = 03 w4 = 21

w1 = 010301010301030 w5 = 232123232123212

w2 = 10103010 w6 = 32321232

w3 = 1 w7 = 3

(|w0|, |w1|, |w2|, |w3|) = (2, 15, 8, 1)

(d0, d1, d2, d3) = (16, 10, 16, 10)

(n0, n1, n2, n3) = (0, 1, 0, 0)
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Double Square in Sage free software

Plot a double square tile and its reduction :

sage: D = DoubleSquare((34,21,34,21))

sage: D.plot_reduction(ncols=5)
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Reduction of double square tiles

(ε,323, ε,22,
ε,101, ε,00)

sw
a
p
1

t
r
im

1

t
r
im

3

t
r
im

0

t
r
im

2

Moreover,

The transformations trimi and swapi are invertible.

The transformations trim−1
i and swap−1

i preserve palindromes.

Proposition (Blondin Massé, Brlek, Garon, L.)

Let ABÂB̂ ≡ XY X̂ Ŷ be the boundary of a double square D. If D reduces
to the unit square tile, then

A, B, X and Y are palindromes,

D is invariant under a rotation of 180 degrees.
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Open problems

Some problems are left open :

Find an algorithm that decides whether a polyomino is prime.

If αα appears in the boundary word of a double square tile D, where
α ∈ {0, 1, 2, 3}, then D is not prime.

Prove that if S ◦ P is a square tile, then so is P.

Describe the distribution and the proportion of prime square tiles of
half-perimeter n as n goes to infinity.

Extend the results to 8-connected polyominoes.

Extend the results to continuous paths and tiles.

Understand the function (|w0|, |w1|, |w2|, |w3|) 7→ double square.

Understand the tree of double squares under swapi and extendi .
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Double Square in Sage free software

Double Square tile from the lengths of the wi :

sage: from sage.combinat.double_square_tile import DoubleSquare

sage: DoubleSquare((4,7,4,7))

Double Square Tile

w0 = 3232 w4 = 1010

w1 = 1212323 w5 = 3030101

w2 = 2121 w6 = 0303

w3 = 0101212 w7 = 2323030

(|w0|, |w1|, |w2|, |w3|) = (4, 7, 4, 7)

(d0, d1, d2, d3) = (14, 8, 14, 8)

(n0, n1, n2, n3) = (0, 0, 0, 0)
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Sébastien Labbé (LIAFA) Double Squares April 4th 2013 58 / 58


	Tilings
	Boundary words
	Number of regular tilings
	At most two regular square tilings
	Fibonacci and Christoffel tiles are double squares
	Reduction (and construction) of double square tiles
	Open problems

