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Goals of this talk

The Goal of this talk is to construct 3D 6-connected discrete lines that
behave like 2D ones, that is :

minimal for 6-connectedness,

close enough to the Euclidean line.

In our approach, we also want the 3D lines to

be defined by a dynamical system,

be generated by substitutions.
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Offset approach for 2D Discrete Lines

0 < −2 x + 5 y ≤ 7

−2 x + 5 y = 0
−2 x + 5 y = 7

The line is 4-connected minimal and tiles the plane Z2 by translation.
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One good thing about 2d lines

I =

The blue discrete line is the coding of a translation on a vertical line.
The interval I is the fundamental domain of a dynamical system.

Can we get such a dynamical system for 3d discrete lines ?
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Cylinder offset approach for 3D Discrete Lines

Proposition (Brimkov et al. 2008)

Let D be a digital line defined by cylindrical
offset of radius ω. If ω ≥

√
3, then D is at least

18-connected.

Brimkov et al. 2008 :

“Moreover, the experiments showed
that if ω is chosen to be equal to

√
2 or

to 1 rather than to
√

3, then D is still
always 6-connected (and thus also 18-
and 26-connected).”

ω =
√

3 = 1.73
Proved to be 18-
connected
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Cylinder offset approach for 3D Discrete Lines

With a directive vector (2, 3, 5) passing trough (0, 0, 0), one gets the
following formula for the cylinder :

17

19
x2 − 6

19
xy − 10

19
xz +

29

38
y 2 − 15

19
yz +

13

38
z2 < ω2.

ω = 0.68
Not connected

ω = 0.69
6-connected
but not minimal

Which shape (instead of cylinder) would give a minimal connected 3d line ?
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V. Berthé and S. Labbé (LIAFA & LaCIM) Combinatorial 3D Discrete Lines April 8th , 2011 9 / 38



Cylinder offset approach for 3D Discrete Lines

With a directive vector (2, 3, 5) passing trough (0, 0, 0), one gets the
following formula for the cylinder :

17

19
x2 − 6

19
xy − 10

19
xz +

29

38
y 2 − 15

19
yz +

13

38
z2 < ω2.

ω = 0.68
Not connected

ω = 0.69
6-connected
but not minimal

Which shape (instead of cylinder) would give a minimal connected 3d line ?

V. Berthé and S. Labbé (LIAFA & LaCIM) Combinatorial 3D Discrete Lines April 8th , 2011 9 / 38



Tribonacci Example from Rauzy (1982)

Let σ be the substitution 1 7→ 12, 2 7→ 13, 3 7→ 1.
Iterating σ on the letter 1 yields increasing prefixes :

σ1(1) = 12

σ2(1) = 1213

σ3(1) = 1213121

σ4(1) = 1213121121312

σ5(1) = 121312112131212131211213
...

...

σ∞(1) = 1213121121312121312112131213121121312121...

σ∞(1) is the fixed point of σ and Mσ =

 1 1 1
1 0 0
0 1 0

 is its incidence

matrix.
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Tribonacci Example from Rauzy (1982)

σ = 1 7→ 12, 2 7→ 13, 3 7→ 1

σ∞(1) = 12131211213121213121 · · ·

x

y

z

Eigenvector of Mσ
: ~v

= (1.
000, 0

.5437, 0
.2956)

(0, 0, 0)

(10, 6, 3)

(2,−1,−1)

(3,−2,−1)

Proposition (Rauzy 1982)

The closure of the projection of σ∞(1) parallel to the
eigenvector is a bounded fractal that tiles the plane
periodically.

This fundamental domain yields a dynamical system.

So, this 3D line behaves like usual 2D discrete lines (minimal
6-connected, dynamical system, substitutive).

Can we get the same in any 3D direction and how ?

This question is related to the Pisot Conjecture.
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V. Berthé and S. Labbé (LIAFA & LaCIM) Combinatorial 3D Discrete Lines April 8th , 2011 11 / 38



Tribonacci Example from Rauzy (1982)

σ = 1 7→ 12, 2 7→ 13, 3 7→ 1

σ∞(1) = 12131211213121213121 · · ·

x

y

z

Eigenvector of Mσ
: ~v

= (1.
000, 0

.5437, 0
.2956)

(0, 0, 0)

(10, 6, 3)

(2,−1,−1)

(3,−2,−1)

Proposition (Rauzy 1982)

The closure of the projection of σ∞(1) parallel to the
eigenvector is a bounded fractal that tiles the plane
periodically.

This fundamental domain yields a dynamical system.

So, this 3D line behaves like usual 2D discrete lines (minimal
6-connected, dynamical system, substitutive).

Can we get the same in any 3D direction and how ?

This question is related to the Pisot Conjecture.
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V. Berthé and S. Labbé (LIAFA & LaCIM) Combinatorial 3D Discrete Lines April 8th , 2011 11 / 38



Tribonacci Example from Rauzy (1982)

σ = 1 7→ 12, 2 7→ 13, 3 7→ 1

σ∞(1) = 12131211213121213121 · · ·

x

y

z

Eigenvector of Mσ
: ~v

= (1.
000, 0

.5437, 0
.2956)

(0, 0, 0)

(10, 6, 3)

(2,−1,−1)

(3,−2,−1)

Proposition (Rauzy 1982)

The closure of the projection of σ∞(1) parallel to the
eigenvector is a bounded fractal that tiles the plane
periodically.

This fundamental domain yields a dynamical system.

So, this 3D line behaves like usual 2D discrete lines (minimal
6-connected, dynamical system, substitutive).

Can we get the same in any 3D direction and how ?

This question is related to the Pisot Conjecture.

V. Berthé and S. Labbé (LIAFA & LaCIM) Combinatorial 3D Discrete Lines April 8th , 2011 11 / 38



Tribonacci Example from Rauzy (1982)

σ = 1 7→ 12, 2 7→ 13, 3 7→ 1

σ∞(1) = 12131211213121213121 · · ·

x

y

z

Eigenvector of Mσ
: ~v

= (1.
000, 0

.5437, 0
.2956)

(0, 0, 0)

(10, 6, 3)

(2,−1,−1)

(3,−2,−1)

Proposition (Rauzy 1982)

The closure of the projection of σ∞(1) parallel to the
eigenvector is a bounded fractal that tiles the plane
periodically.

This fundamental domain yields a dynamical system.

So, this 3D line behaves like usual 2D discrete lines (minimal
6-connected, dynamical system, substitutive).

Can we get the same in any 3D direction and how ?

This question is related to the Pisot Conjecture.
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2D : Euclid algorithm on (11, 4)

11 = 2 · 4 + 3
4 = 1 · 3 + 1
3 = 3 · 1 + 0

4
11 = 0 + 1

2 +
1

1 +
1

3

w = aaabaaabaaabaab

(0, 0)

(11, 4)

a

b

(11, 4) (3, 4) (3, 1) (0, 1)

w = w0 w1 w2 w3 = b

(
1 1
0 1

)2 (
1 0
1 1

) (
1 1
0 1

)3

a 7→ a
b 7→ aab

a 7→ ab
b 7→ b

a 7→ a
b 7→ aaab
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3D : Imitation of Euclid algorithm on (7, 4, 6)

(7, 4, 6) (1, 4, 6) (1, 4, 2) (1, 0, 2) (1, 0, 0)

w0 w1 w2 w3 w4

 1 0 1
0 1 0
0 0 1

  1 0 0
0 1 0
0 1 1

  1 0 0
0 1 2
0 0 1

  1 0 0
0 1 0
2 0 1


1 7→ 1
2 7→ 2
3 7→ 13

1 7→ 1
2 7→ 23
3 7→ 3

1 7→ 1
2 7→ 2
3 7→ 223

1 7→ 133
2 7→ 2
3 7→ 3

w = w0 = 12132131321321313

1

2

3
(0, 0, 0)

(7, 4, 6)

x

y

z

Its (Hausdorff) distance to the euclidean line is 1.3680.
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3D Continued fraction algorithms

Brun Subtract the second largest to the largest.

Poincaré Subtract the smallest to the mid and the mid to the largest.

Selmer Subtract the smallest to the largest.

Fully subtractive Subtract the smallest to the other two.

Arnoux-Rauzy Subtract the sum of the two smallest to the largest (not
always possible).
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On (23, 45, 37) using Brun algorithm

Let ~u = (23, 45, 37). Using Brun algorithm, one gets

(0, 0, 0)

(23, 45, 37)

x

y

z

and its distance to the Euclidean segment is 1.0753.
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On (23, 45, 37) using Poincaré algorithm

Let ~u = (23, 45, 37). Using Poincaré algorithm, one gets

(0, 0, 0)

(23, 45, 37)

x

y

z

and its distance to the Euclidean segment is 1.0340.
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On (41, 11, 8) using Fully subtractive algorithm

Let ~u = (41, 11, 8). Using Fully subtractive algorithm, one gets

(0, 0, 0)

(41, 11, 8)

x

y

z

and its distance to the Euclidean segment is 8.8163.
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On (41, 11, 8) using Poincaré algorithm

Let ~u = (41, 11, 8). Using Poincaré algorithm, one gets

(0, 0, 0)

(41, 11, 8)

x

y

z

and its distance to the Euclidean segment is 5.3528.
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On (41, 11, 8) using Brun algorithm

Let ~u = (41, 11, 8). Using Brun algorithm, one gets

(0, 0, 0)

(41, 11, 8)

x

y

z

and its distance to the Euclidean segment is 1.0348.
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On (41, 11, 8) using Arnoux-Rauzy algorithm

Let ~u = (41, 11, 8). Using Arnoux-Rauzy algorithm, one gets

(0, 0, 0)

(41, 11, 8)

x

y

z

and its distance to the Euclidean segment is 0.98270.
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When a + b + c = 60 using Fully subtractive
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When a + b + c = 60 using Poincaré
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When a + b + c = 60 using Brun
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When a + b + c = 60 using Arnoux-Rauzy
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3D Continued fraction algorithms : fusions

Arnoux-Rauzy and Selmer Do Arnoux-Rauzy if possible, otherwise Selmer.

Arnoux-Rauzy and Fully Do Arnoux-Rauzy if possible, otherwise Fully
subtractive.

Arnoux-Rauzy and Brun Do Arnoux-Rauzy if possible, otherwise Brun.

Arnoux-Rauzy and Poincaré Do Arnoux-Rauzy if possible, otherwise
Poincaré.
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When a + b + c = 60 using Arnoux-Rauzy and Selmer
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When a + b + c = 60 using Arnoux-Rauzy and Fully
Subtractive
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When a + b + c = 60 using Arnoux-Rauzy and Brun
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When a + b + c = 60 using Arnoux-Rauzy and Poincaré

V. Berthé and S. Labbé (LIAFA & LaCIM) Combinatorial 3D Discrete Lines April 8th , 2011 31 / 38



When a + b + c = 200 using Arnoux-Rauzy and Poincaré
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When a + b + c = 220 using Arnoux-Rauzy and Poincaré
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When a + b + c = 250 using Arnoux-Rauzy and Poincaré
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When a + b + c = 500 using Arnoux-Rauzy and Poincaré
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Correspondence between discrete lines and planes

There is a bijection between the generated discrete line and the section of
a discrete plane.

Projection of a finite
prefix of σ∞(1) E ∗1 (σ12)(C ) where C is

the upper unit cube

For more details about the dynamical system defined on the section of
discrete plane and the bijection, consult the article (Theorem 2).
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Conclusion

In brief, we proposed a new construction method for 3D discrete lines
which

is minimal and 6-connected,

is close to the Euclidean line,

is defined by an offset which is not a circle but a fractal,

is generated by elementary substitutions,

is the symbolic coding of a dynamical system.

Moreover we believe that it

has linear word complexity,

has low word balance value.

It has been experimentally verified that fusions of Arnoux-Rauzy and Brun
or Poincaré algorithms behave very nicely (average distance is 1).
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Further research

More work need to be done now :

Prove that the distance is bounded for all integer directions.

Do thorough comparisons with existing 3D discrete lines (O.
Figueiredo, and J.-P. Reveilllès, J.-L. Toutant, ...)

Credits :

This research was driven by computer exploration using the
open-source mathematical software Sage.

Images of this document were produced using pgf/tikz.
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