Avancées récentes sur des questions issues des pavages du plan par translation d’une tuile

Sébastien Labbé

Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Université Montpellier 2
Laboratoire de Combinatoire et d’Informatique Mathématique
Université du Québec à Montréal

Séminaire du LaCIM
UQAM, Montréal
29 octobre 2010

Travail fait en collaboration avec Ariane, Alexandre et Srečko
Outline

1 Introduction
 - Discrete Figures
 - Tilings
 - Beauquier and Nivat
 - Hexagonal and Square Tiles
 - A conjecture of Brlek, Dulucq, Fédou and Provençal, 2007
 - A conjecture of Provençal and Vuillon, 2008

2 (Idea of the) Proof of the first conjecture

3 (Idea of the) Proof of the second conjecture

4 Open problems
Outline

1 Introduction
 - Discrete Figures
 - Tilings
 - Beauquier and Nivat
 - Hexagonal and Square Tiles
 - A conjecture of Brlek, Dulucq, Fédou and Provençal, 2007
 - A conjecture of Provençal and Vuillon, 2008

2 (Idea of the) Proof of the first conjecture

3 (Idea of the) Proof of the second conjecture

4 Open problems
• Discrete plane : \mathbb{Z}^2

• **Definition**: A *polyomino* is a finite, 4-connected subset of the plane, without holes.
The Tiling by Translation Problem

Let P be a polyomino. We say that

- P tiles the plane if there exists a set T of non-overlapping translated copies of P that covers all the plane.
- P is called a tile if it tiles the plane.

![Diagram of a tiling pattern](image-url)
The Tiling by Translation Problem

Let \(P \) be a polyomino. We say that

- \(P \) tiles the plane if there exists a set \(T \) of non-overlapping translated copies of \(P \) that covers all the plane.
- \(P \) is called a tile if it tiles the plane.

Problem

Does a given polyomino \(P \) tile the plane?
Sur les tuiles doubles carrées
\[\Sigma = \mathbb{Z}_4 = \{0, 1, 2, 3\} \]
Freeman Chain Code

\[\Sigma = \mathbb{Z}_4 = \{0, 1, 2, 3\} \]

\[w = 0103301103301111232211233233 \]
Freeman Chain Code

\[\Sigma = \mathbb{Z}_4 = \{0, 1, 2, 3\} \]

Any conjugate \(w' \) of \(w \) codes the same polyomino.

\(w \) and \(w' \) are conjugate if there exist \(u, v \in \Sigma^* \) such that \(w = uv \) and \(w' = vu \). We write \(w \equiv_{|u|} w' \).

\[w = 0103301103301111232211233233 \]
Freeman Chain Code

\[\Sigma = \mathbb{Z}_4 = \{0, 1, 2, 3\} \]

Any conjugate \(w' \) of \(w \) codes the same polyomino.

\(w \) and \(w' \) are conjugate if there exist \(u, v \in \Sigma^* \) such that \(w = uv \) and \(w' = vu \). We write \(w \equiv |u| \ w' \).

\[[w] \equiv 0103301103301111232211233233 \]
Freeman Chain Code

\[\Sigma = \mathbb{Z}_4 = \{0, 1, 2, 3\} \]

Any conjugate \(w' \) of \(w \) codes the same polyomino.

\(w \) and \(w' \) are conjugate if there exist \(u, v \in \Sigma^* \) such that \(w = uv \) and \(w' = vu \). We write \(w \equiv |u| \, w' \).

\[[w] \equiv 0103301103301111232211233233 \]
Freeman Chain Code

\[\Sigma = \mathbb{Z}_4 = \{0, 1, 2, 3\}\]

Any conjugate \(w'\) of \(w\) codes the same polyomino.

\(w \text{ and } w' \text{ are conjugate if there exist } u, v \in \Sigma^* \text{ such that } w = uv \text{ and } w' = vu.\) We write \(w \equiv |u| w'.\)
Characterization : A polyomino P tiles the plane if and only if there exist $X, Y, Z \in \Sigma^*$ such that $[w] \equiv XYZ\hat{X}\hat{Y}\hat{Z}$.

$X = 0 0 1 0 3 0 1$

$\hat{X} = 3 2 1 2 3 2 2$

hexagon tiles

square tiles
There are polyominoes admitting many hexagon tilings:

A $1 \times n$ rectangle tiles the plane as an hexagon in $n - 1$ ways and as a square in only 1 way.
There are polyominoes admitting many hexagon tilings:

A $1 \times n$ rectangle tiles the plane as an hexagon in $n - 1$ ways and as a square in only 1 way.
There are polyominoes admitting many hexagon tilings:

A $1 \times n$ rectangle tiles the plane as an hexagon in $n - 1$ ways and as a square in only 1 way.
There are polyominoes admitting many hexagon tilings:

A $1 \times n$ rectangle tiles the plane as an hexagon in $n - 1$ ways and as a square in only 1 way.
There are polyominoes admitting many hexagon tilings:

A $1 \times n$ rectangle tiles the plane as an hexagon in $n - 1$ ways and as a square in only 1 way.
There are polyominoes admitting many hexagon tilings:

A $1 \times n$ rectangle tiles the plane \textit{as an hexagon in} $n - 1$ \textit{ways and as a square in only 1 way}.
There are polyominoes admitting many hexagon tilings:

A \(1 \times n\) rectangle tiles the plane as an hexagon in \(n - 1\) ways and as a square in only 1 way.
The pentomino has two distinct square factorizations:
The pentomino has two distinct square factorizations:
The **pentomino** has **two** distinct square factorizations:
The pentomino has two distinct square factorizations:
The *pentomino* has two distinct square factorizations.
The **pentomino** has two distinct square factorizations:
The *pentomino* has *two* distinct square factorizations:
The pentomino has two distinct square factorizations:

Conjecture (Brlek, Dulucq, Fédou, Provençal 2007)

A tile has at most 2 square factorizations.
Palindromes in Prime Double Square Tiles

Conjecture (X. Provençal and L. Vuillon, 2008 in the PK-4214)

If $XY\hat{X}\hat{Y} \equiv WZ\hat{W}\hat{Z}$ are distinct Beauquier-Nivat factorizations of a prime double square tile, then X, Y, W and Z are palindromes.

Note: a palindrome is a word that reads the same forward as it does backward.
Outline

1 Introduction
 - Discrete Figures
 - Tilings
 - Beauquier and Nivat
 - Hexagonal and Square Tiles
 - A conjecture of Brlek, Dulucq, Fédou and Provençal, 2007
 - A conjecture of Provençal and Vuillon, 2008

2 (Idea of the) Proof of the first conjecture

3 (Idea of the) Proof of the second conjecture

4 Open problems
Idea of the proof: at most 2 square factorizations

Lemma (Brlek, Fédou, Provençal, 2008)

The factorizations $UV\hat{U}\hat{V} \equiv d_1 XY\hat{X}\hat{Y}$ of a double square tile must alternate, that is $0 < d_1 < |U| < d_1 + |X|$.

Suppose that there is a triple square tile having the following boundary:

$UV\hat{U}\hat{V} \equiv d_1 XY\hat{X}\hat{Y} \equiv d_2 WZ\hat{W}\hat{Z}$.
Examples

Suppose that $|U| = |V| = |X| = |Y| = |W| = |Z| = 3$.

If a third factorization $WZ\hat{W}\hat{Z}$ exists, then, $0 = 2$ and $1 = 3$ which is a contradiction. Hence, there is no triple square tile of perimeter 12.

Although, there are words having more than two square factorizations. An example of length 36 was provided by X. Provençal:
Examples

Suppose that $|U| = |V| = |X| = |Y| = |W| = |Z| = 3.$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>2</th>
<th></th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>V</td>
<td>\hat{U}</td>
<td>\hat{V}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>\hat{X}</td>
<td>\hat{Y}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If a third factorization $WZ = \hat{W} = \hat{Z}$ exists, then, $0 = 2$ and $1 = 3$ which is a contradiction. Hence, there is no triple square tile of perimeter 12.

Although, there are words having more than two square factorizations. An example of length 36 was provided by X. Provençal:
Examples

Suppose that $|U| = |V| = |X| = |Y| = |W| = |Z| = 3$.

```
 0 0 2 0
U V U V
X Y X Y
```

If a third factorization $W Z W Z$ exists, then, $0 = 2$ and $1 = 3$ which is a contradiction. Hence, there is no triple square tile of perimeter 12.

Although, there are words having more than two square factorizations. An example of length 36 was provided by X. Provençal:
Examples

Suppose that $|U| = |V| = |X| = |Y| = |W| = |Z| = 3$.

\[
\begin{array}{cccccc}
0 & 0 & 2 & 2 & 0 \\
\hline
U & V & \hat{U} & \hat{V} \\
X & Y & \hat{X} & \hat{Y}
\end{array}
\]
Examples

Suppose that $|U| = |V| = |X| = |Y| = |W| = |Z| = 3.$

\[
\begin{array}{cccccc}
0 & 0 & 2 & 2 & 0 & 0 \\
U & V & \hat{U} & \hat{V} & \\
X & Y & \hat{X} & \hat{Y} & \\
\end{array}
\]
Examples

Suppose that $|U| = |V| = |X| = |Y| = |W| = |Z| = 3$.

$$
\begin{array}{cccc}
0 & 0 & 2 & 2 \\
U & V & \tilde{U} & \tilde{V} \\
X & Y & \tilde{X} & \tilde{Y}
\end{array}
$$
Examples

Suppose that $|U| = |V| = |X| = |Y| = |W| = |Z| = 3$.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>0</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>V</td>
<td>\hat{U}</td>
<td>\hat{V}</td>
<td>X</td>
<td>Y</td>
<td>\hat{X}</td>
<td>\hat{Y}</td>
<td></td>
</tr>
</tbody>
</table>

If a third factorization $WZ\hat{W}\hat{Z}$ exists, then, $0 = 2$ and $1 = 3$ which is a contradiction. Hence, there is no triple square tile of perimeter 12.

Although, there are words having more than two square factorizations. An example of length 36 was provided by X. Provençal:
Examples

Suppose that $|U| = |V| = |X| = |Y| = |W| = |Z| = 3$.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>U</td>
<td>V</td>
<td>U</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>X</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examples

Suppose that $|U| = |V| = |X| = |Y| = |W| = |Z| = 3$.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>3</th>
<th>2</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td></td>
<td>V</td>
<td></td>
<td>\hat{U}</td>
<td></td>
<td>\hat{V}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>Y</td>
<td></td>
<td>\hat{X}</td>
<td></td>
<td>\hat{Y}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examples

Suppose that $|U| = |V| = |X| = |Y| = |W| = |Z| = 3$.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>3</th>
<th>2</th>
<th>0</th>
<th>3</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>V</td>
<td>\tilde{U}</td>
<td>\tilde{V}</td>
<td>X</td>
<td>Y</td>
<td>\hat{X}</td>
<td>\hat{Y}</td>
<td>W</td>
<td>Z</td>
<td>\hat{W}</td>
<td>\hat{Z}</td>
</tr>
</tbody>
</table>

Note that the factor 221003 is a closed path...

If a third factorization $WZ\hat{W}\hat{Z}$ exists, then, $0 = 2$ and $1 = 3$ which is a contradiction. Hence, there is no triple square tile of perimeter 12.

Although, there are words having more than two square factorizations. An example of length 36 was provided by X. Provençal:
Examples

Suppose that $|U| = |V| = |X| = |Y| = |W| = |Z| = 3$.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>2</th>
<th>0</th>
<th>3</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>V</td>
<td>\hat{U}</td>
<td>\hat{V}</td>
<td>X</td>
<td>Y</td>
<td>\hat{X}</td>
<td>\hat{Y}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examples

Suppose that $|U| = |V| = |X| = |Y| = |W| = |Z| = 3$.

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>U</td>
<td>V</td>
<td>\hat{U}</td>
<td>\hat{V}</td>
<td>X</td>
<td>Y</td>
<td>\hat{X}</td>
<td>\hat{Y}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that the factor 221003 is a closed path...
Examples

Suppose that $|U| = |V| = |X| = |Y| = |W| = |Z| = 3$.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>2</th>
<th>3</th>
<th>0</th>
<th>3</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>V</td>
<td>\hat{U}</td>
<td>\hat{V}</td>
<td>X</td>
<td>Y</td>
<td>\hat{X}</td>
<td>\hat{Y}</td>
<td>W</td>
<td>Z</td>
<td>\hat{W}</td>
<td>\hat{Z}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If a third factorization $WZ\hat{W}\hat{Z}$ exists, then, $0 = 2$ and $1 = 3$ which is a contradiction. Hence, there is no triple square tile of perimeter 12.

Although, there are words having more than two square factorizations. An example of length 36 was provided by X. Provençal:
Examples

Suppose that $|U| = |V| = |X| = |Y| = |W| = |Z| = 3$.

If a third factorization $WZ\hat{W}\hat{Z}$ exists, then, $0 = 2$ and $1 = 3$ which is a contradiction. Hence, there is no triple square tile of perimeter 12.
Examples

Suppose that $|U| = |V| = |X| = |Y| = |W| = |Z| = 3$.

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>V</td>
<td>\hat{U}</td>
<td>\hat{V}</td>
<td>X</td>
<td>Y</td>
<td>\hat{X}</td>
<td>\hat{Y}</td>
<td>W</td>
<td>Z</td>
</tr>
</tbody>
</table>

If a third factorization $WZ\hat{W}\hat{Z}$ exists, then, $0 = 2$ and $1 = 3$ which is a contradiction. Hence, there is no triple square tile of perimeter 12.

Although, there are words having more than two square factorizations. An example of length 36 was provided by X. Provençal :

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>122</td>
<td>10012</td>
<td>21001</td>
<td>221</td>
<td>0</td>
<td>0</td>
<td>322</td>
<td>30032</td>
<td>23003</td>
<td>223</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>U</td>
<td>V</td>
<td>\hat{U}</td>
<td>\hat{V}</td>
<td>X</td>
<td>Y</td>
<td>\hat{X}</td>
<td>\hat{Y}</td>
<td>W</td>
<td>Z</td>
<td>\hat{W}</td>
<td>\hat{Z}</td>
</tr>
</tbody>
</table>
Examples

Suppose that $|U| = |V| = |X| = |Y| = |W| = |Z| = 3$.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>2</th>
<th>3</th>
<th>0</th>
<th>3</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>V</td>
<td>\hat{U}</td>
<td>\hat{V}</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>\hat{X}</td>
<td>\hat{Y}</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Z</td>
<td>\hat{W}</td>
<td>\hat{Z}</td>
<td></td>
</tr>
</tbody>
</table>

If a third factorization $WZ\hat{W}\hat{Z}$ exists, then, $0 = 2$ and $1 = 3$ which is a contradiction. Hence, there is no triple square tile of perimeter 12.

Although, there are words having more than two square factorizations. An example of length 36 was provided by X. Provençal:

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>122</th>
<th>10012</th>
<th>21001</th>
<th>221</th>
<th>0</th>
<th>0</th>
<th>322</th>
<th>30032</th>
<th>23003</th>
<th>223</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>V</td>
<td>\hat{U}</td>
<td>\hat{V}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>\hat{X}</td>
<td>\hat{Y}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Z</td>
<td>\hat{W}</td>
<td>\hat{Z}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that the factor 221003 is a closed path...
The first differences sequence of \(w \in (\mathbb{Z}_4)^* \)

\[
\Delta w = (w_2 - w_1) \cdot (w_3 - w_2) \cdots (w_n - w_{n-1}).
\]

represents the sequence of turns of the path.

\(w = 01012223211 \)
\(\Delta w = 1311001330 \)
First differences sequence

The first differences sequence of $w \in (\mathbb{Z}_4)^*$

$$
\Delta w = (w_2 - w_1) \cdot (w_3 - w_2) \cdots (w_n - w_{n-1}).
$$

represents the sequence of turns of the path.

\[w = 01012223211 \quad \Delta w = 1311001330 \]

We also consider $\Delta[w]$ well defined on the conjugacy classes :

$$
\Delta[w] = (w_2 - w_1) \cdot (w_3 - w_2) \cdots (w_n - w_{n-1}) \cdot (w_1 - w_n) = \Delta w \cdot (w_1 - w_n).
$$
The turning number of a path w is $\mathcal{T}(w) = \frac{|\Delta w_1| - |\Delta w_3|}{4}$ and corresponds to its total curvature divided by 2π (Wikipedia). We have that

- $\mathcal{T}(w) = -\mathcal{T}(\hat{w})$ for all path $w \in \Sigma^*$
- $\mathcal{T}([w]) = \pm 1$ for all simple and closed path w.
The turning number of a path \(w \) is \(\mathcal{T}(w) = \frac{|\Delta w|_1 - |\Delta w|_3}{4} \) and corresponds to its total curvature divided by \(2\pi \) (Wikipedia). We have that

- \(\mathcal{T}(w) = -\mathcal{T}(\hat{w}) \) for all path \(w \in \Sigma^* \)
- \(\mathcal{T}([w]) = \pm 1 \) for all simple and closed path \(w \).

For example,

\[w = 01012223211 \]
\[\Delta w = 1311001330 \]
\[\mathcal{T}(w) = 1/4 \]

\[\hat{w} = 33010003232 \]
\[\Delta \hat{w} = 0113003313 \]
\[\mathcal{T}(\hat{w}) = -1/4 \]
Turning number

Then, for a square tile, the sum of the four angles between X, Y, \hat{X} and \hat{Y} must be 2π.

Lemma (Blondin-Massé, Brlek, Garon, L. 2010)

Si $XY\hat{X}\hat{Y}$ est la frontière orientée positivement d'une tuile carrée, alors

$$\Delta[XY\hat{X}\hat{Y}] = \Delta X \cdot 1 \cdot \Delta Y \cdot 1 \cdot \Delta \hat{X} \cdot 1 \cdot \Delta \hat{Y} \cdot 1.$$
Idée de la preuve : au plus 2 factorisations carrées

On s'intéresse aux moitiés du contour

\[x = x_0 x_1 x_2 \cdots x_{n-1} = 1 \cdot \Delta U \cdot 1 \cdot \Delta V, \]
\[y = y_0 y_1 y_2 \cdots y_{n-1} = 1 \cdot \Delta \hat{U} \cdot 1 \cdot \Delta \hat{V}. \]

One have \(x_i = y_i = 1 \) for all \(i \in I \) where

\[I = \{ 0, d_1, d_1 + d_2, |U|, d_1 + |X|, d_1 + d_2 + |W| \} \subseteq \mathbb{Z}_n. \]
On définit trois réflexions sur \mathbb{Z}_n :

\begin{align*}
s_1 : i & \mapsto |U| - i, \\
s_2 : i & \mapsto |X| + 2d_1 - i, \\
s_3 : i & \mapsto |W| + 2(d_1 + d_2) - i.
\end{align*}

Lemma

Soit $i \in \mathbb{Z}_n$ et $j \in \{1, 2, 3\}$ tels que s_j est admissible sur i. Alors

- $y_i = -x_{s_j(i)}$ et $x_i = -y_{s_j(i)}$.
- Si $x_i = y_i$, alors $x_{s_j(i)} = y_{s_j(i)}$.
Idée de la preuve : au plus 2 factorisations carrées

Soit \(n = 30, \ d_1 = 3, \ d_2 = 5, \ |U| = 17, \ |X| = 17 \) et \(|W| = 15 \).
\(1 = x_0 = -x_{s_3s_2s_1s_3s_2}(0) = -x_{17} = -1 = 3 \) une contradiction.

On a \(s_1 = s_3s_2s_1s_3s_2 \). Si \(s_3s_2s_1s_3s_2 \) est un produit admissible de réflexions sur 0, alors \(x_0 = -x_{17} \) ce qui est une contradiction. Autrement, des contradictions similaires sont obtenues.
Theorem (Blondin Massé, Brlek, Garon, L. 2010)

* A tile has *at most* 2 square factorizations.
Outline

1 Introduction
 • Discrete Figures
 • Tilings
 • Beauquier and Nivat
 • Hexagonal and Square Tiles
 • A conjecture of Brlek, Dulucq, Fédou and Provenčal, 2007
 • A conjecture of Provenčal and Vuillon, 2008

2 (Idea of the) Proof of the first conjecture

3 (Idea of the) Proof of the second conjecture

4 Open problems
Composition of tiles

The factorization $AB\hat{A}\hat{B}$ of a square S allows to define the substitution

$$\varphi_S : 0 \mapsto A, 1 \mapsto B, 2 \mapsto \hat{A}, 3 \mapsto \hat{B}.$$

For any polyomino P having boundary w we define the composition

$$S \circ P := \varphi_S(w).$$

Note: This is not commutative.
Composition of tiles

The factorization $AB\hat{A}\hat{B}$ of a square S allows to define the substitution

$$\varphi_S : 0 \mapsto A, 1 \mapsto B, 2 \mapsto \hat{A}, 3 \mapsto \hat{B}.$$

For any polyomino P having boundary w we define the composition

$$S \circ P := \varphi_S(w).$$

Note: This is not commutative.

Definition

A polyomino Q is prime if $Q = S \circ P$ implies that S or P is the unit square.
Theorem (Blondin Massé, Brlek, Garon, L. (GASCom 2010))

Every double square reduces to a composed cross pentomino.
Reduction of double square tiles

Moreover,

- The transformations T_i are invertible.
- The transformations T_i^{-1} preserve palindromes.

Proposition (Blondin Massé, Brlek, Garon, L. (GASCom 2010))

Let $AB\hat{A}\hat{B} \equiv XY\hat{X}\hat{Y}$ be the boundary of a double square D. If D reduces to the prime cross pentomino, then A, B, X and Y are palindromes.
Questions:

- Do every prime double square reduces to the prime cross pentomino?
- Does the reduction T_i preserve prime tiles?
- Does the inverse T_i^{-1} preserve composed tiles?
- Do the following diagram commutes?
Let $AB\hat{A}\hat{B} \equiv XY\hat{X}\hat{Y}$ be the factorizations of a double square tile.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>\hat{A}</th>
<th>\hat{B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
<td>\hat{X}</td>
<td>\hat{Y}</td>
</tr>
</tbody>
</table>
Let $AB\hat{A}\hat{B} \equiv XY\hat{X}\hat{Y}$ be the factorizations of a double square tile.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>\hat{A}</th>
<th>\hat{B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_0</td>
<td>w_1</td>
<td>w_2</td>
<td>w_3</td>
<td>w_4</td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>\hat{X}</td>
<td>\hat{Y}</td>
<td></td>
</tr>
</tbody>
</table>

In general $|w_i - 1| + |w_i + 1|$ is a period of $w_i - 1 w_i w_i + 1$.
Let $AB\hat{A}\hat{B} \equiv XY\hat{X}\hat{Y}$ be the factorizations of a double square tile.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>\hat{A}</th>
<th>\hat{B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_0</td>
<td>w_1</td>
<td>w_2</td>
<td>w_3</td>
<td>w_4</td>
</tr>
<tr>
<td>w_6</td>
<td>w_5</td>
<td>w_6</td>
<td>\hat{X}</td>
<td>\hat{Y}</td>
</tr>
</tbody>
</table>

A
Let $AB\hat{A}\hat{B} \equiv XY\hat{X}\hat{Y}$ be the factorizations of a double square tile.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>\hat{A}</th>
<th>\hat{B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_0</td>
<td>w_1</td>
<td>w_2</td>
<td>w_3</td>
</tr>
</tbody>
</table>

X Y \hat{X} \hat{Y}

\hat{w}_6 \hat{w}_5

A

In general

- $|w_{i-1}| + |w_{i+1}|$ is a period of $w_{i-1}w_iw_{i+1}$.

Hence we write

- $w_i = (u_iv_i)^{n_i}u_i$ where $|u_iv_i| = |w_{i-1}| + |w_{i+1}|$.
Transformations

Let $S = (w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7)$. We define

\[\text{SHRINK}_0(S) = (w_0(v_0u_0)^{-1}, w_1, w_2, w_3, w_4(v_4u_4)^{-1}, w_5, w_6, w_7), \]

\[\text{SWAP}_0(S) = (\hat{w}_4, (v_1u_1)^{n_1}v_1, \hat{w}_6, (v_3u_3)^{n_3}v_3, \hat{w}_0, (v_5u_5)^{n_5}v_5, \hat{w}_2, (v_7u_7)^{n_7}v_7) \]

and

\[\text{EXTEND}_0(S) = (w_0(v_0u_0), w_1, w_2, w_3, w_4(v_4u_4), w_5, w_6, w_7) \]

and their conjugates

- $\text{SHIFT}(S) = (w_1, w_2, w_3, w_4, w_5, w_6, w_7, w_0)$,
- $\text{SHRINK}_i(S) = \text{SHIFT}^{-i} \circ \text{SHRINK}_0 \circ \text{SHIFT}^i(S)$,
- $\text{SWAP}_i(S) = \text{SHIFT}^{-i} \circ \text{SWAP}_0 \circ \text{SHIFT}^i(S)$,
- $\text{EXTEND}_i(S) = \text{SHIFT}^{-i} \circ \text{EXTEND}_0 \circ \text{SHIFT}^i(S)$.
Example of reduction
Idea of the proof

Let $H(w) = |w|_0 + |w|_2$ be the number of horizontal steps of the path w and $V(w) = |w|_1 + |w|_3$ be its number of vertical steps.

Lemma

Let $S = (w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7)$ be the factorization of a double square. Then, $H(w_i) = H(w_{i+4})$ and $V(w_i) = V(w_{i+4})$.
Idea of the proof

Let \(H(w) = |w|_0 + |w|_2 \) be the number of horizontal steps of the path \(w \) and \(V(w) = |w|_1 + |w|_3 \) be its number of vertical steps.

Lemma

Let \(S = (w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7) \) be the factorization of a double square. Then, \(H(w_i) = H(w_{i+4}) \) and \(V(w_i) = V(w_{i+4}) \).

Lemma

SWAP\(_i\), SHRINK\(_i\) and EXTEND\(_i\) commute with the composition.
Idea of the proof

Let $H(w) = |w|_0 + |w|_2$ be the number of horizontal steps of the path w and $V(w) = |w|_1 + |w|_3$ be its number of vertical steps.

Lemma

Let $S = (w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7)$ be the factorization of a double square. Then, $H(w_i) = H(w_{i+4})$ and $V(w_i) = V(w_{i+4})$.

Lemma

SWAP$_i$, SHRINK$_i$ and EXTEND$_i$ commute with the composition.

Proposition (Blondin-Massé, L., 2010)

Every prime double square reduces to the prime cross pentomino.

Corollary

If $XY\hat{X}\hat{Y} \equiv WZ\hat{W}\hat{Z}$ are distinct Beauquier-Nivat factorizations of a prime double square tile, then X, Y, W and Z are palindromes.
1 Introduction
- Discrete Figures
- Tilings
- Beauquier and Nivat
- Hexagonal and Square Tiles
- A conjecture of Brlek, Dulucq, Fédou and Provençal, 2007
- A conjecture of Provençal and Vuillon, 2008

2 (Idea of the) Proof of the first conjecture

3 (Idea of the) Proof of the second conjecture

4 Open problems
Open problems

Some problems are left open:

- Find an algorithm that decides whether a polyomino is prime.
- If $\alpha\alpha$ appears in the boundary word of a double square tile D, where $\alpha \in \{0, 1, 2, 3\}$, then D is not prime.
- Prove that if $S \circ P$ is a square tile, then so is P.
- Describe the distribution and the proportion of prime square tiles of half-perimeter n as n goes to infinity.
- Show that SHRINK$_i$ and SWAP$_i$ are sufficient to reduce a double square tile: no need to use the more complicated L-SHRINK$_i$ and R-SHRINK$_i$ defined for limit cases.
- Extend the results to 8-connected polyominoes.
- Extend the results to continuous paths and tiles.
This research was driven by computer exploration using the open-source mathematical software Sage.

Les images de ce document ont été produites à l’aide de pgf/tikz.