On the maximal number of ways to tile the plane by translation as a square

Sébastien Labbé

Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier Université Montpellier 2 Laboratoire de Combinatoire et d'Informatique Mathématique Université du Québec à Montréal

Seminar On The Interaction Between Discrete Geometry And Combinatorics On Words Math-Info 2010 Marseille, June 8th 2010

Common work with : Alexandre Blondin Massé, Srečko Brlek et Ariane Garon

Outline

Introduction

- Discrete Figures
- Tilings
- Beauquier and Nivat
- Hexagonal and Square Tiles
- A conjecture of Brlek, Dulucq, Fédou and Provençal

2 Proof of conjecture

3 Conclusion

- \bullet Discrete plane : \mathbb{Z}^2
- **Definition** : A polyomino is a finite, 4-connected subset of the plane, without holes.

The Tiling by Translation Problem

Let P be a polyomino. We say that

- *P* tiles the plane if there exists a set *T* of non-overlapping translated copies of *P* that covers all the plane.
- *P* is called a tile if it tiles the plane.

The Tiling by Translation Problem

Let P be a polyomino. We say that

- *P* tiles the plane if there exists a set *T* of non-overlapping translated copies of *P* that covers all the plane.
- *P* is called a tile if it tiles the plane.

Problem

Does a given polyomino P tile the plane?

Sébastien Labbé (LIRMM)

Any conjugate w' of w codes the same polyomino.

w and w' are conjugate if there exist $u, v \in \Sigma^*$ such that w = uv and w' = vu. We write $w \equiv_{|u|} w'$.

w = 0103301103301111232211233233

Any conjugate w' of w codes the same polyomino.

w and w' are conjugate if there exist $u, v \in \Sigma^*$ such that w = uv and w' = vu. We write $w \equiv_{|u|} w'$.

 $[w] \equiv \mathbf{0103301103301111232211233233}$

Any conjugate w' of w codes the same polyomino.

w and w' are conjugate if there exist $u, v \in \Sigma^*$ such that w = uv and w' = vu. We write $w \equiv_{|u|} w'$.

 $[w] \equiv \mathbf{0103301103301111232211233233}$

Characterization : A polyomino P tiles the plane if and only if there exist $X, Y, Z \in \Sigma^*$ such that $[w] \equiv XYZ\widehat{X}\widehat{Y}\widehat{Z}.$

hexagon tiles

Maurits Cornelis Escher (1898-1972). Hexagonal tiling. Square tiling.

Conjecture (Brlek, Dulucq, Fédou, Provençal 2007)

A tile has at most 2 square factorizations.

Preuve

Supposons qu'il existe une tuile triple carrée dont la frontière s'écrit :

 $UV\widehat{U}\widehat{V} \equiv_{d_1} XY\widehat{X}\widehat{Y} \equiv_{d_2} WZ\widehat{W}\widehat{Z}.$

Lemma (Brlek, Fédou, Provençal, 2008)

Les deux factorisations $UV\widehat{U}\widehat{V} \equiv_{d_1} XY\widehat{X}\widehat{Y}$ d'une tuile double carrée doivent alterner c'est-à-dire que $0 < d_1 < |U| < d_1 + |X|$.

	U			V			Û			\widehat{V}			
$\stackrel{\longrightarrow}{\vdash} d_1$		x			Y			Ŷ			\widehat{Y}		
	d_2		W			Ζ			Ŵ			Â	

0		0			2		2			0	
	U		V			Û		\widehat{V}			
		Х		Y			Ŷ		Ŷ		

0		0			2		2	0		0	
	U		V			Û		\widehat{V}			
		Х		Y			Ŷ		Ŷ		

0		0	2		2		2	0		0	
	U		V			Û		\widehat{V}			
		Χ		Y			Ŷ		Ŷ		

0	1	0	2		2		2	0		0	1
	U		V			Û		\widehat{V}			
		X		Y			Ŷ		Ŷ		

0	1	0	2		2	3	2	0		0	1
	U		V			Û		\widehat{V}			
		X		Y			Ŷ		Ŷ		

0	1	0	1	2		2	3	2	0		0	1
	U			V			Û		\widehat{V}			
		X			Y			Ŷ		Ŷ		

0	1	0	1	2		2	3	2	0	3	0	1
	U			V			Û		\widehat{V}			
		Х			Y			Ŷ		Ŷ		

0	1	0	1	2	1	2	3	2	0	3	0	1
	U			V			Û		\widehat{V}			
		X			Y			Ŷ		Ŷ		

0	1	0	1	2	1	2	3	2	3	0	3	0	1
	U			V			Û			\widehat{V}			
		X			Y			Ŷ			Ŷ		

0	1	0	1	2	1	2	3	2	3	0	3	0	1
	U			V			Û			\widehat{V}			
		U X			Y			Ŷ			Ŷ		
		X W				Ζ			Ŵ			Ź	

Suppose that |U| = |V| = |X| = |Y| = |W| = |Z| = 3.

0	1	0	1	2	1	2	3	2	3	0	3	0	1
	U			V			Û			\widehat{V}			
		Χ			Y			Ŷ			Ŷ		
		X W				Ζ			Ŵ			Ź	

If a third factorization $WZ\widehat{W}\widehat{Z}$ exists, then, $\mathbf{0} = \mathbf{2}$ and $\mathbf{1} = \mathbf{3}$ which is a contradiction. Hence, there is no triple square tile of perimeter 12.

Suppose that |U| = |V| = |X| = |Y| = |W| = |Z| = 3.

0	1	0	1	2	1	2	3	2	3	0	3	0	1
	U			V			Û			\widehat{V}			
		Х			Y			Ŷ			Ŷ		
			W			Ζ			Ŵ			Ź	

If a third factorization $WZ\widehat{W}\widehat{Z}$ exists, then, $\mathbf{0} = \mathbf{2}$ and $\mathbf{1} = \mathbf{3}$ which is a contradiction. Hence, there is no triple square tile of perimeter 12.

Although, there are words having more than two square factorizations. An example of length 36 was provided by X. Provençal :

0	0	122	10012	21001	221	0	0	322	30032	23003	223
	U			V			Û			\widehat{V}	
		X			Y					:	Ŷ
			W			Ζ			Ŵ		2 Î

Suppose that |U| = |V| = |X| = |Y| = |W| = |Z| = 3.

0	1	0	1	2	1	2	3	2	3	0	3	0	1
	U			V			Û			\widehat{V}			
		Х			Y			Ŷ			Ŷ		
			W			Ζ			Ŵ			Ź	

If a third factorization $WZ\widehat{W}\widehat{Z}$ exists, then, $\mathbf{0} = \mathbf{2}$ and $\mathbf{1} = \mathbf{3}$ which is a contradiction. Hence, there is no triple square tile of perimeter 12.

Although, there are words having more than two square factorizations. An example of length 36 was provided by X. Provençal :

0	0	122	10012	21001	221	0	0	322	30032	23003	223
	U			V			Û			\widehat{V}	
		X			Y			Ŷ		:	Ŷ
			W			Ζ			Ŵ		Ź

Note that the factor 221003 is a closed path...

La suite des différences successives de $w \in \Sigma^*$ est

$$\Delta w = (w_2 - w_1) \cdot (w_3 - w_2) \cdots (w_n - w_{n-1}).$$

Elle représente la suite des virages d'un chemin.

On considère aussi $\Delta[w]$ bien définie sur les classes de conjugaison :

$$\Delta[w] = (w_2 - w_1) \cdot (w_3 - w_2) \cdots (w_n - w_{n-1}) \cdot (w_1 - w_n) = \Delta w \cdot (w_1 - w_n).$$

Le turning number d'un chemin w est

$$\mathcal{T}(w) = \frac{|\Delta w|_1 - |\Delta w|_3}{4}$$

et correspond à sa courbure totale divisée par 2π . On a

- $\mathcal{T}(w) = -\mathcal{T}(\widehat{w})$ pour tout chemin $w \in \Sigma^*$
- $\mathcal{T}([w]) = \pm 1$ pour tout chemin simple et fermé w.

Lemma

Si $XY\widehat{X}\widehat{Y}$ est la frontière orientée positivement d'une tuile carrée, alors

$$\Delta[XY\widehat{X}\widehat{Y}] = \Delta X \cdot \mathbf{1} \cdot \Delta Y \cdot \mathbf{1} \cdot \Delta \widehat{X} \cdot \mathbf{1} \cdot \Delta \widehat{Y} \cdot \mathbf{1}.$$

On s'intéresse aux moitiés du contour

$$\begin{array}{rcl} x & = & x_0 x_1 x_2 \cdots x_{n-1} & = & \mathbf{1} \cdot \Delta U \cdot \mathbf{1} \cdot \Delta V, \\ y & = & y_0 y_1 y_2 \cdots y_{n-1} & = & \mathbf{1} \cdot \Delta \widehat{U} \cdot \mathbf{1} \cdot \Delta \widehat{V}. \end{array}$$

One have $x_i = y_i = 1$ for all $i \in I$ where $I = \{0, d_1, d_1 + d_2, |U|, d_1 + |X|, d_1 + d_2 + |W|\} \subseteq \mathbb{Z}_n.$

Preuve

On définit trois réflexions sur \mathbb{Z}_n :

$$s_1: i \mapsto |U| - i,$$

$$s_2: i \mapsto |X| + 2d_1 - i,$$

$$s_3: i \mapsto |W| + 2(d_1 + d_2) - i.$$

Lemma

Soit $i \in \mathbb{Z}_n$ et $j \in \{1, 2, 3\}$ tels que s_j est admissible sur i. Alors

•
$$y_i = -x_{s_i(i)}$$
 et $x_i = -y_{s_i(i)}$.

• Si
$$x_i = y_i$$
, alors $x_{s_i(i)} = y_{s_i(i)}$.

Preuve

Soit n = 30, $d_1 = 3$, $d_2 = 5$, |U| = 17, |X| = 17 et |W| = 15. $\mathbf{1} = x_0 = -x_{s_3 s_2 s_1 s_3 s_2(0)} = -x_{17} = -\mathbf{1} = \mathbf{3}$ une contradiction.

On a $s_1 = s_3 s_2 s_1 s_3 s_2$. Si $s_3 s_2 s_1 s_3 s_2$ est un produit admissible de réflexions sur 0, alors $x_0 = -x_{17}$ ce qui est une contradiction. Autrement, des contradictions similaires sont obtenues.

Sébastien Labbé (LIRMM)

Ways to tile the plane as a square

Theorem (Blondin-Massé, Brlek, Garon, L.)

Un polyomino pave le plan à la manière d'un carré en au plus 2 façons.

Conjecture (X. Provençal and L. Vuillon, 2008)

If $XY\hat{X}\hat{Y}$ describes the contour of a prime double square tile, then both X and Y are palindromes.

Note : a palindrome is a word that reads the same forward as it does backward.

- This research was driven by computer exploration using the open-source mathematical software Sage and its algebraic combinatorics features developed by the Sage-Combinat community, and in particular, F. Saliola, A. Bergeron and S. Labbé.
- Les images de ce document ont été produites à l'aide de pgf/tikz. Liens :
 - sagemath.org
 - combinat.sagemath.org