PAVAGE PAR TRANSLATION

Déf: Un polyomino est un ensemble $P \subseteq \mathbb{Z}^2$, 4-connexe qui ne possède pas de trou.

Exemple:

$P = \{ (0,0), (1,0), (3,0), (4,0), (0,1), (1,1), (2,1), (3,1) \}$

Déf: Une famille $\{P_i\}_{i \in I}$ de polyominos pave le plan si $\bigcup_{i \in I} P_i = \mathbb{Z}^2$ et $i \neq j \Rightarrow P_i \cap P_j = \emptyset$.

Déf (Notation): Soit $\mathbf{u} \in \mathbb{Z}^2$. On note $P + \mathbf{u} = \{ x + \mathbf{u} | x \in P \}$

Déf: Un polyomino P pave le plan par translation s'il existe $\mathbf{u}, \mathbf{v} \in \mathbb{Z}^2$ tels que $\{ P + k\mathbf{u} + l\mathbf{v} | k, l \in \mathbb{Z} \}$ pave le plan.
COMBINATOIRE DES MOTS

* Un ensemble Σ appelé alphabet dont les éléments sont appelés des lettres.
* Les éléments w du monoïde libre Σ^* sont appelés des mots et on note $w \in \Sigma^*$.
* On écrit $w = w_0 w_1 \cdots w_{n-1}$, $w_i \in \Sigma$.
* La longueur $|w|$ de w est $|w| = n$.
* Si $w = pfs$, alors p est un préfixe, f un facteur et s est un suffixe de w.

* Si $w = xy$ et $w' = yx$, alors on dit que w et w' sont conjugués et on écrit $W \equiv W'$.

* Un morphisme est une fonction $\varphi : \Sigma^* \rightarrow \Sigma^*$ telle que $\varphi(uv) = \varphi(u)\varphi(v)$, $u, v \in \Sigma^*$.

* Un morphisme est dit alphabétique si $|\varphi(\alpha)| = 1$, $\forall \alpha \in \Sigma$.

* Le miroir d'un mot $w = w_0 w_1 \cdots w_{n-1}$ est le mot $w_{n-1} w_{n-2} \cdots w_0 w_0$ et est noté \overline{w}.
CODAGE DE FREEMAN

Le codage de Freeman (1961) permet de représenter un chemin 4-connexe de \(\mathbb{Z}^2 \) par un mot sur l'alphabet \(D = \{0, 1, \bar{0}, \bar{1}\} \).

ex: (a) \[\rightarrow \rightarrow \rightarrow \] \(w = 000101 \)
(b) \[\downarrow \rightarrow \rightarrow \rightarrow \] \(01000 = \bar{w} \)
(c) \[\uparrow \leftarrow \leftarrow \leftarrow \] \(\bar{0} \bar{0} \bar{1} \bar{0} \bar{1} = \bar{w} \)
(d) \[\downarrow \leftarrow \leftarrow \leftarrow \] \(1 \bar{0} \bar{1} \bar{0} \bar{0} \bar{0} = \bar{w} = \bar{\bar{w}} = \hat{w} \)

ex: (a) \[\square \] \(001 \bar{0} \bar{1} \bar{0} \bar{1} = \mathcal{w} \) \(\mathcal{w} \) et \(z \) sont conjugués
(b) \[\square \] \(1 \bar{0} \bar{1} \bar{0} \bar{0} \bar{1} = z \) \(\text{ie. } \mathcal{w} = z \)

Définition : Soit \(P \) un polyomino, on note \(b(P) \) l'ensemble des mots de contour de \(P \).
Théorème de Beauquier-Nivat

Théorème (Beauquier, Nivat, 1991) Un polyomino P pavé le plan par translation \iff il existe $X, Y, Z \in \mathcal{D}^*$ tels que $XYZXYYZ \leq b(P)$ où au plus un des mots X, Y, Z est vide. \square

Exemple:

```
X Y Z X \ Y \ Z = 101. 100. 010. 101. 001. 010.
```

Définition: Un polyomino dont la BN-factorisation $w = XYZXYYZ$ est telle qu'aucun des facteurs X, Y, Z n'est vide est appelé un pseudo-hexagone.

Définition: Un polyomino dont la BN-factorisation $w = XYZXYYZ$ est telle qu'aucun des facteurs X, Y, Z n'est vide est appelé pseudo-carre.

Rappel: Certains pseudo-hexagones pavent le plan de plusieurs manières différentes.

Conjecture (Xavier Provençal, 2008): Un pseudo-carre pavé le plan en au plus deux manière. \square

Objectif: Étudier les équations du type $X Y \ Y \ X = A B A B A B$.
CHEVAUCHEMENTS

Ex: Les mots ‘cheval’ et ‘valet’ “se chevauchent”.

Définition: Soient $u, v \in \mathbb{E}^*$. On dit que u chevauche v avec un décalage $d \in \mathbb{Z}$ si

$$|v| < d < |u|$$

et s'il existe $s, t \in \mathbb{E}^*$ tels que $d = |s| - |t|$ et tu et sv sont comparables pour l'ordre préfixe.

Dessins (4 possibilités):

(a) \[\begin{array}{c}
\text{**u**} \\
\hline
\text{**d**} \\
\hline
\text{**v**} \\
\end{array}\]

(b) \[\begin{array}{c}
\text{**u**} \\
\hline
\text{**d**} \\
\hline
\text{**v**} \\
\end{array}\]

(c) \[\begin{array}{c}
\text{**u**} \\
\hline
\text{**d**} \\
\hline
\text{**v**} \\
\end{array}\]

(d) \[\begin{array}{c}
\text{**u**} \\
\hline
\text{**d**} \\
\hline
\text{**v**} \\
\end{array}\]

Exemples:

(i) ‘cheval’ chevauche ‘valet’ avec décalage 3.

(iii) ‘alphabet’ chevauche ‘tab’ avec décalage 3.

On définit la relation

$$R = \{ (u, v, d) \in \mathbb{E}^* \times \mathbb{E}^* \times \mathbb{Z} \mid u \text{ chevauche } v \text{ avec décalage } d \}$$
Le relation R permet de représenter des équations. En effet,
$$u = v \iff (u, v, 0) \in R \text{ et } |u| = |v|.$$
Solution Générale

Définition: Soient $u,v \in \Sigma^*$ et $w,z \in \Delta^*$. On dit que (w,z) est une solution du chevauchement (u,v,d) si

1. $(w,z,d) \in \mathbb{F}$
2. Il existe un morphisme alphabétique $\varphi : \Sigma^* \to \Delta^*$ tel que $\varphi(u) = w$ et $\varphi(v) = z$.

Définition: On dit que (w,z) est la solution générale du chevauchement (u,v,d) si

1. (w,z) est une solution du chev. (u,v,d)
2. Si (w',z') est une solution du chev. (u,v,d), alors (w',z') est aussi solution du chev. (w,z,d).

Exemples: 'level' et 'radar' sont des solutions générales du chevauchement (p,p,o) où $|p|=5$.

Proposition: Le solution générale d'un chevauchement (u,v,d) est unique à isomorphisme près.

Remarque: L'intérêt de la solution générale est que plusieurs de ses propriétés (palindromicité, périodicité...) se propagent à toutes les solutions.
Plus d’Exemples

Ex1: Quelle est la solution générale du chevauchement $(u, u, 3)$ où $|u| = 7$?

On obtient les égalités $1=4, 2=5, 3=6, 4=7$ que l’on représente par une partition de l’alphabet initial :
\[\{1, 4, 7\}, \{2, 5\}, \{3, 6\} \]

On choisit un représentant par classe et on écrit
\[u = 1231231 \]

On remarque que 3 est une période de u.

Quelle est la solution générale du chevauchement $(u, u, 3)$ où $|u| = |v| = 7$?

On obtient la partition
\[\{1, 12\}, \{2, 13\}, \{4, 8\}, \{5, 7\}, \{6, 10\}, \{4, 11\}, \{3, 14\} \]

On choisit un représentant par classe et on obtient
\[u = 1234567 \] et \[v = 4567123 \]

Ainsi, u et v sont conjugués : $u \equiv v$.

Ex2: